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ABSTRACT

In this paper we propose a new approach to the cam-
era self-calibration problem, based on geometric algebra.
After a brief introduction on the adopted Clifford alge-
bra framework, we provide new insight on the epipolar
constraint as defined in terms of bivectors. On the basis
of that, we propose a novel solution for the simultanous
determination of the focal lengths of the cameras and
the rigid motion between views.

1 Introduction

Current state-of-the-art methods for the image-based
joint estimation of camera motion and scene structure
are mostly based on projective geometry [1], which is
a well-established homogeneous corpus of fundamen-
tal tools and results that seems to have now reached
a rather stable and solid configuration. In the past
few years, however, Grassman algebra and, particularly,
Clifford algebra [2] (geometric algebra) have gained
more and more of the interest of researchers in com-
puter vision because of their generality, their computa-
tional solidity, their notational elegance and, most of all,
because there is still much to explore in that direction.
Clifford algebra is a coodinate-free approach to geom-

etry, based on a single operation called geometric prod-
uct, which acts on “oriented subspaces” rather than
just vectors. Such oriented subspaces are very generally
defined as combinations of “blades” of various grades
(scalars, vectors, bivectors,... n-vectors). Starting from
the geometric product, we can define a wide collection of
geometric operations between oriented subspaces (outer
product, inner product, meet, join, etc.), whose intrinsic
algebraic connotation, combined with a coordinate-free
approach, offers much greater geometric insight.
A basic introduction to geometric algebra can be

found in [2] and several successful applications are al-
ready available in the fields of mathematical physics and
engineering. In particular, an application to problems of
projective geometry can be found in [3] and [4]. Start-
ing from these results, in this paper we will show how
geometric algebra can be used to efficently represent the
camera geometry and the epipolar constraint, with new

insight in its geometric interpretation. Based on that,
we will develop a set of equations for the simultanous
determination of camera position, orientation and focal
lenght using two views.

2 The projective space in geometric algebra

Adopting the same notation used in [2], a generic point
p of the projective space P3 can be written in homoge-
neous form as p = a1e1 + a2e2 + a3e3 + e4, where e1,
e2, e3, e4 form a base of P3. The line l passing through
a given pair of points p1 and p2 can be expressed as a
bivector of the form l = p1 ∧ p2, where the wedge oper-
ator denotes the outer product between vectors and can
be written in terms of the geometric product. Similarly,
the plane passing through the three points p1, p2 and p3
can be written as the grade-3 blade π = p1 ∧ p2 ∧ p3.
In geometric algebra the meet operation defines the

intersection of subspaces. Given two generic subspaces
A and B, their intersection can be expressed as

A ∩B = (B · J) ·A , (1)

where J = A ∪ B is called the join of A and B, and
represents the smallest subspace containing both A and
B, while the dot operator denotes the inner product be-
tween subspaces, which can also be written in terms of
the geometric product.
Notice that, when A and B are two coplanar lines

l1 = p11 ∧ p12 and l2 = p21 ∧ p22, eq. (1) allows us to
determine their point of intersection p as

p = (l2 · (p11 ∧ p12 ∧ p21)) · l1 . (2)

Notice also that the join of two non-coinciding planes π1,
π2 is generally equal to the whole space I4 = e1∧e2∧e3∧
e4, therefore the line of intersection between such planes
can be written as the bivector l = (π2 · I4) · π1. As the
dual space of π2 is π

∗
2 = π2 · I4, the line of intersection

between π1 and π2 can be readily expressed as l = π∗2 ·π1.
Similarly, the intersection between a plane π and a line
l can be written as p = (π · I4) · l = π∗ · l.
Another important issue is to test whether two sub-

spaces are incident. A general condition for the inci-
dence of two subspaces A and B is given in geometric



algebra as A ·B∗ = 0, which becomes A ∧B = 0 when
the grade of A ∧B is smaller or equal to the dimension
of the space. This expression becomes very useful when
we want to verify the incidence of two lines (bivectors),
as the dimension of P3 is 4. In fact, the two lines l1 and
l2 are found to intersect in a point p if and only if

l1 ∧ l2 = 0 . (3)

3 The epipolar constraint

Eq. (3) allows us to formulate of the epipolar constraint
in quite a straightforward fashion. Let c1 and c2 be the
centers of the cameras and p1 and p2 be the projections
(world coordinates) of a point p onto the first and second
camera, respectively. The epipolar constraint can be
written as

(c1 ∧ p1) ∧ (c2 ∧ p2) = 0 . (4)

A simple pin-hole camera model is completely spec-
ified by an optical center c, a focal length f and the
directions of the camera axes x1, x2 and x3. Under
these assumptions, a point of homogeneous image co-
ordinates m = [m1,m2,m3]

T , with m3 = 1, turns out
to be expressed as p = m1x1 + m2x2 + m3fx3 + c in
the world coordinate frame. If we consider two different
views of the same point p, of homogeneous coordinates
m = [m1,m2,m3]

T and n = [n1, n2, n3]
T , eq. (4) can be

specialized as follows

(m1 (c1 ∧ x1) +m2 (c1 ∧ x2) +m3f1 (c1 ∧ x3)) ∧
(n1 (c2 ∧ y)1 + n2 (c2 ∧ y2) + n3f2 (c2 ∧ y3)) = 0 ,

(5)

where f1, c1, xi are the parameters of the first cam-
era and f2, c2, yi are those of the second camera.
If, for the moment, we assume that f1 = f2 = 1,
then eq. (5) can be expanded as a sum of grade-4
blades of the form minjεijI4, where εij are unknown
scalars, therefore the epipolar constraint takes on the
form

P
i,j=1..3minjεijI4 = 0. This expression, after

eliminating I4, can be written in matrix form as

mTEn = 0 (6)

where E is the 3×3 matrix of the coefficients εij , which is
the classical formulation of the epipolar constraint where
E is the well-known essential matrix. More generally,
when no assumptions are made on f1 and f2, similar
considerations hold true and, as we will see later on, eq.
(6) becomes the fundamental matrix F .

4 The essential matrix revisited

In this Section we derive a geometric interpretation of
the coefficients εij of the essential matrix E, using the
representation of bivectors in geometric algebra. With-
out loss of generality, we assume that the axes of the
world coordinate frame are oriented like the axes of the

first camera, and that the origin of the world frame is
in the camera’s optical center, i. e. x1 = e1, x2 = e2,
x3 = e3 and c1 = e4. With this assumption, we can
rework the epipolar constraint (5) to obtain nine equa-
tions of the form

εijI4 = (e4 ∧ ei) ∧ (c2 ∧ yj) (7)

all involving the quadrivector I4. As we can see, there
are three equations for each axis yj , whose unknowns
are both εij and the axes c2 ∧ yj of the second camera.
Notice that, in general, any line l can be written as a
linear combination of the bivectors of the base as follows

l = a1l1 + a2l2 + a3l3

+b1bl1 + b2bl2 + b3bl3 , (8)

where l1 = e2∧e3, l2 = e3∧e1, l3 = e1∧e2, bl1 = e4∧e1,bl2 = e4∧e2 and bl3 = e4∧e3. This notation for the grade-
2 base elements emphasizes the fact that base bivectors
li and bli are pairwise dual. In fact, a line (bivector) can
always be written as the sum of two terms:

• a line b1bl1 + b2bl2 + b3bl3 passing through the origin
of the world reference frame (“finite” component);

• a line a1l1 + a2l2 + a3l3 on the plane at infinity
(component “at infinity”).

Notice that this notation for lines is somewhat redun-
dant, as it involves 6 (projective) parameters instead
of 5. The additional degree of freedom will be later
removed through a consistency constraint on the coeffi-
cients.
The coefficients ai and bi can be obtained by comput-

ing the inner product between the line l and the corre-
sponding base bivector, li or bli. For example, we have
l · li = (a1l1 + a2l2 + a3l3 + b1bl1 + b2bl2 + b3bl3) · li

= aili · li = −ai . (9)

Similarly, if we compute the inner product between both
sides of eq. (7) and the bivector li, we obtain

εijI4 · li =
³bli ∧ (c2 ∧ yj)´ · li

using the known equalities I4 · li = bli, and (A∧B) ·C =
A · (B ·C), we can write

εijbli = bli · ((c2 ∧ yj) · li) . (10)

Notice that the term (c2 ∧ yj) · li in the right-hand side
of eq. (10) is a scalar, therefore we can write εij = (c2 ∧
yj) · li. As shown in eq. (9), the inner product between a
bivector l and the base bivector li at infinity, returns the
relative coefficient ai, with a sign change. This shows
that the generic element εij of the essential matrix is, in
fact, the coefficient of the component at infinity li of the
camera-2 axis yj . We can thus conclude that, knowing
the essential matrix, we already have the components at
infinity of the camera-2 axes.



5 The rotation matrix revisited

In order to determine position and orientation of the sec-
ond camera we still need to compute the coefficients of
the base bivectors blj that pass through the world origin.
With this goal in mind, we need a compact notation for
the axes of the second camera

c2 ∧ y1 = −ET1 l −RT1 bl
c2 ∧ y2 = −ET2 l −RT2 bl (11)

c2 ∧ y3 = −ET3 l −RT3 bl
where Ej =

£
ε1j ε2j ε3j

¤T
, j = 1, ..., 3, are the

columns of the essential matrix; the vectors Rj =£
r1j r2j r3j

¤T
, j = 1, ..., 3, collect the unknowns;

while l and bl are defined as l = £
l1 l2 l3

¤T
andbl = h bl1 bl2 bl3 iT . We will now prove that Rj ,

j = 1, ..., 3, are the columns of the rotation matrix of
the second camera.
One interesting property of a generic line (8) of the

projective space P3 is that its orientation is given by its
intersection with the plane at infinity π∞ = e1∧ e2∧ e3,
which can be written as (π∞ · I4) · l = l · π∗∞.In fact,
using the property (1), we can write

(a1l1 + a2l2 + a3l3 + b1bl1 + b2bl2 + b3bl3) · (−e4) =
−b1bl1 · e4 − b2bl2 · e4 − b3bl3 · e4 =

b1e1 + b2e2 + b3e3 .

Also, eq. (11) implies that the directions y1, y2, y3 of
the camera-2 axes can be written as a function of the
directions x1 = e1, x2 = e2, x3 = e3 of the camera-1
axes

y1 = −r11e1 − r21e2 − r31e3
y2 = −r12e1 − r22e2 − r32e3
y3 = −r13e1 − r23e2 − r33e3 .

It is now quite apparent that matrix of the unknowns

R =
£
R1 R2 R3

¤T
is, in fact, the rotation matrix

of the second camera.

6 Retrieving the second camera

We now have enough tools to derive an alternative for-
mulation of the self-calibration problem. The essential
matrix E can, in fact, be computed using a few point-
corrispondences between the two views (see [1]), there-
fore all we need for determining the orientation of the
second camera are the coefficients rij that describe the
“finite” component of the camera-2 axes. In order to
estimate the coefficients of this component, a set of con-
straints between the known and unknown parameters
needs to be found. First of all, the axes of the second
camera must meet in the optical center c2. This leads

to the following pairwise-incident conditions

(c2 ∧ y1) ∧ (c2 ∧ y2) = 0

(c2 ∧ y1) ∧ (c2 ∧ y3) = 0 (12)

(c2 ∧ y2) ∧ (c2 ∧ y3) = 0 ,

which can be rewritten as ET1 R2 +E
T
2 R1 = 0

ET1 R3 +E
T
3 R1 = 0

ET2 R3 +E
T
3 R2 = 0

. (13)

Such equations, however, are only meant to imply that
the axes will meet pairwise, therefore we also need an
additional orthogonality constraint on the axes. This
could be done by imposing that R be an orthonormal
matrix with unit determinant. However, it is more con-
venient to represent rotations with rotors [2], which bet-
ter exploit the characteristics of geometric algebra and
are intrinsecally related to quaternions. In fact, the
generic rotor in the the metric space E3 is expressed
as a multivector of the form Q = a + bl1 + cl2 + dl3,
which has a scalar component a and a bivector com-
ponent bl1 + cl2 + dl3, subjected to the normalization
constraint

a2 + b2 + c2 + d2 = 1 . (14)

Incidentally, the bivector component bl1+ cl2+dl3 only
involves bivectors at infinity in the projective space P3.
Represent rotations with rotors, the orthonormal con-
straint on R is automatically satisfied.
Notice however, that it is not difficult to derive the

rotation matrix from the rotor’s components

R1 =
£
a2 − d2 − c2 + b2 2bc+ 2ad 2bd− 2ac ¤T

R2 =
£
2bc− 2ad −b2 + a2 + c2 − d2 2ab+ 2cd

¤T
R3 =

£
2bd+ 2ac −2ab+ 2cd −c2 − b2 + a2 + d2 ¤T .

An additional set of constraints can be derived from
the fact that the essential matrix E can always be writ-
ten in closed form as E = [t]×R, where t and R are
the translation vector and the rotation matrix of the
second camera with respect to the first one, and [t]× is
the skew-simmetric matrix form of t [1]. This implies
that each row of E is bound to be orthogonal to the
corresponding row of R, i.e.

ET1 R1 = 0, ET2 R2 = 0, ET3 R3 = 0 . (15)

This leads to an interesting property of lines in geomet-
ric algebra. In fact, if we write a generic line (8) as the
outer product of two of its points in P3, the coefficients
of the bivectors at infinity ai, i = 1, ...3, and the coeffi-
cients bi, i = 1, ...3 of the “finite” base bivectors, must
satisfy the consistency constraint a1b1+a2b2+a3b3 = 0.
This result can also be proven using classical tools of
geometric algebra. This is the additional constraint



mentioned in Section 4, which reduces the notational
redundancy of the bivector representations.
Eqs. (13) and (15) can be expressed in terms of£
a b c d

¤T
. Along with the normalization con-

straint (14) we end up with a nonlinear system of seven
equations in four unknowns. As E is a rank-2 matrix,
only six of these seven equations are, in fact, linearly in-
dependent. It is thus possible to compute position and
orientation of the second camera by numerically solving
the system. This way we end up with two solutions, only
one of which corresponds to a camera whose optical axis
is oriented consistently with that of the first camera.

7 Focal length estimation

In the previous Sections we made the assumption that
the focal lengths of the cameras were equal to one. We
will now remove this limitation and show how to esti-
mate the unknown focal length.
Case 1: fixed focal length — Let us first consider the
case in which the focals are unknown but equal to each
other, f1 = f2 = f , and the first camera is in the ori-
gin. In this case, the epipolar constraint eq. (6) becomes
mTFn = 0, where F is the fundamental matrix. On the
other hand, the coefficients εij of the axes of the second
camera are still the elements of the essential matrix E.
As we know, the relationship between the essential

matrix E and the fundamental matrix F is

E = KT
2 FK1 (16)

where K1 =diag(f1, f1, 1) and K2 =diag(f2, f2, 1) are
the matrices of intrinsic parameters (in this case only
the focal lengths) of the first and second camera, re-
spectively. When f1 = f2 = f , eq. (16) becomes

E =

 f11 f12 f13/f
f21 f22 f23/f
f31/f f32/f f33/f

2

 (17)

Similarly to what done in the previous Section, we can
use the notation (11) to express the axes of the second
camera. The system of equations formed by (13), (15)
and (14) is still sufficient to retrive both orientation and
focal length of the second camera. In fact we now have
seven nonlinear equations (six of which are linearly inde-
pendent) in the five unknowns

£
a b c d f

¤
. The

system has four solutions, only one of which has posi-
tive focal length f and optical axis oriented consistently
with the one of the first camera. This approach differs
from the classical solutions to the problem of camera cal-
ibration based on the Kruppa equations [5], or from the
method proposed by Newsam [6], for it simultaneously
retrieves both camera orientation and focal lenghts.
Case 2: variable focal length — When f1 is not ex-
pected to match f2, eq. (17) becomes

E =

 f11 f12 f13/f2
f21 f22 f23/f2
f31/f1 f32/f1 f33/(f1f2)

 .

Once again we have a nonlinear system of
seven equations, this time in the six unknowns£
a b c d f1 f2

¤
, which can still be solved nu-

merically. In fact this system is fully constrained and
allows us to find both focal lengths, plus position and
orientation of the second camera with respect to the first
one. Notice that the system has more than one solution,
only one of which is correct. This solution can be easily
determined as the one such that f1 > 0, f2 > 0, and
focal axes consistently oriented.

8 Simulation results and conclusions

In this paper we proposed a novel geometric interpreta-
tion of essential and rotation matrices in terms of bivec-
tors in geometric algebra. From this parametrization we
derived a procedure for computing both focal lengths to-
gether with position and orientation of second camera
with respect to the first one, without introducing pro-
jective ambiguities.
A series of experiments have been conducted on noisy

image coordinates of clouds of points with the goal of
comparing the proposed solution with existing others.
The experiments confirmed our method’s accuracy to be
comparable with state-of-the art methods in the litera-
ture. Our method, however, enables the estimation of
both intrinsic and extrinsic camera parameters simulta-
neously and with no ambiguities, with a novel approach
that seems to open new directions in Computer Vision
research.
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