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ABSTRACT

In this paper we address the blind separation of an in-
stantaneous complex mixture of statistically indepen-
dent non-circular signals. We show that, if the sources
are non-circular at order 2, by exploiting all the second-
order information, the mixing matrix can be estimated
up to a real orthogonal factor. This is based on a link
with the Takagi factorization, for the computation of
which we derive a Jacobi-type algorithm. We prove
that, if the sources are non-circular at order 4, after
a classical prewhitening, the remaining unitary factor
can be found via a simultaneous Takagi factorization /
Hermitian Eigenvalue Decomposition (EVD). We also
describe a variant in which no hard prewhitening is car-
ried out. In addition, we pay some attention to the issue
of dimensionality reduction, in the case where there are
fewer sources than sensors.

1 INTRODUCTION

The basic statistical model for Independent Component
Analysis (ICA), or Blind Source Separation (BSS), is in
this paper denoted as

Y = MX + N, (1)

in which the observed vector Y ∈ C
J , the source vector

X ∈ C
I and the noise vector N ∈ C

J are zero-mean
random vectors. The components of X are mutually
statistically independent, as well as statistically inde-
pendent from the noise components. We assume that
I 6 J and that the mixing matrix M ∈ C

J×I is non-
singular. The goal of ICA consists of the estimation of
M and the corresponding realizations of X, given only
realizations of Y .
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In this paper we assume that the sources are non-
circular. Non-circularity at order 2 is dealt with in Sec-
tion 2; it applies to, e.g., BPSK constellations. Non-
circularity at order 4 is dealt with in Section 4; it ap-
plies to, e.g., QAM4 and QAM16 constellations. On
the other hand, it is natural to assume that the noise is
circular (e.g. Gaussian).

In what follows, ·T denotes the transpose, ·∗ the com-
plex conjugate and ·H the Hermitian adjoint.

2 SECOND-ORDER ANALYSIS

Let us define C
(1,1)
Y

def
= E{Y Y H} and C

(2,0)
Y

def
= E{Y Y T }.

We have

C
(1,1)
Y = M · C

(1,1)
X · MH + C

(1,1)
N , (2)

C
(2,0)
Y = M · C

(2,0)
X · MT , (3)

in which, due to the mutual statistical independence

of the sources, C
(1,1)
X = diag{σ2

1 , . . . , σ2
I}, with σ2

i =

E{|xi|
2}, and C

(2,0)
X = diag{σ̃2

1 , . . . , σ̃2
I}, with σ̃2

i =
E{x2

i }. We take σi ∈ R
+. In this section we make

the assumption that at most one of the entries of C
(2,0)
X

vanishes. Note that, unlike (2), (3) does not contain a
noise term.

The mixing matrix can only be determined modulo a
permutation and scaling of its columns. In the equiva-
lence class we may consider

M′ def
= M · diag{σ1e

iφ1 , . . . , σIe
iφI}, (4)

with φi defined by σ̃2
i = |σ̃i|

2ei2φi . Let a Singular Value
Decomposition (SVD) of M′ be given by

M′ = U · S · V, (5)

in which U ∈ C
J×I has orthonormal columns, S ∈ R

I×I

is positive diagonal, and V ∈ C
I×I is unitary. Then U

and S can be found from an EVD of C
(1,1)
Y :

C
(1,1)
Y = U · S2 · UH (6)

(neglecting the noise term, for clarity; if J > I and the
noise is spatially white, then the noise variance may be
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estimated as the mean of the J − I smallest eigenvalues

of C
(1,1)
Y , and the noise term may be compensated by

subtracting this value from the I biggest eigenvalues, as
is well-known). Substituting these results in (3) leads to

S−1 · UH · C
(2,0)
Y · U∗ · S−1 =

V · diag{ |σ̃1|
2

σ2

1

, . . . , |σ̃I |
2

σ2

I

} · VT , (7)

which is a Takagi factorization [9]:

Theorem 1 If A ∈ C
I×I is symmetric (A = AT ), then

there exists a unitary E and a real nonnegative diago-
nal Λ such that A = EΛET . The columns of E are
an orthonormal set of eigenvectors for AA∗, and the
corresponding diagonal entries of Λ are the nonnegative
square roots of the corresponding eigenvalues of AA∗.

Let us first consider the hypothetical situation in
which all the values |σ̃i|/σi are distinct. In this case V

can be uniquely determined, up to the sign of its rows,
so that we don’t need Higher-Order Statistics (HOS) to
solve the problem. However, perturbations of a matrix
may result in significant changes of eigenvectors, when
the corresponding eigenvalues are close. In this respect,
it may be wise to resort to HOS anyway, to obtain ex-
tra constraints on the mixing matrix. For instance, it is
clear that, by embedding (7) in a joint diagonalization
(JODI), like we will do in Section 4, the estimation of
V becomes more robust, cf. [2].

Now let us turn to the more common situation in
which all the sources have the same distribution. It is
still possible to extract useful information from C

(2,0)
Y .

The key is that, when AA∗ in the Takagi factorization
theorem has an eigenvalue with multiplicity greater than
1, not every orthonormal set of corresponding eigenvec-
tors can be used for the corresponding columns of E.
Assume that λ2 is an eigenvalue of AA∗ with multiplic-
ity R 6 I, that we have the EVD

AA∗ = (E1 E2) ·

(

λ2I

Λ2
2

)

·

(

EH
1

EH
2

)

(8)

with the obvious partitioning, and that a Takagi factor-
ization of A is given by

A = (E1 E2) ·

(

λI

Λ2

)

·

(

ET
1

ET
2

)

. (9)

In (8), E1 may be replaced by E1Q, in which Q ∈ C
R×R

is unitary, i.e., QQH = I. If we replace E1 in (9) by
E1Q, then this gives only a factorization of A when
QQT = I. Hence, Q = Q∗, or Q can only be a real
orthogonal matrix.

This means that, when the sources are identically dis-
tributed, V can be found from (7) up to a real orthog-
onal factor. This factor has to be estimated from the
HOS of Y . The fact that the factor is real, drastically
reduces the computational complexity — cf. [1, 3, 6].

Note that in this way, half of the independent parame-

ters of V are obtained from C
(2,0)
Y , and the other half

from the HOS of Y .
Instead of calculating C

(1,1)
Y explicitly, it is numer-

ically preferable to work via the SVD of the dataset,
such that the singular values are not squared. For a
square-root version of (7) we may resort to the follow-
ing theorem:

Theorem 2 A matrix A ∈ C
I×T may be decomposed as

A = USVT , with U ∈ C
I×I unitary, S ∈ R

I×T diago-
nal containing R strictly positive entries and V ∈ C

T×T

complex orthogonal (i.e., VT V = I) iff rank(AAT ) =
rank(A) = R.

This theorem can be proved in analogy with the SVD
theorem. Note that VT V does not prevent the entries
of V from being big, which is a numerical disadvantage.
Due to lack of space, we will not discuss procedures for
the computation of the decomposition.

3 JACOBI ALGORITHM FOR TAKAGI’S

FACTORIZATION

The components of the Takagi factorization of a matrix
A can be derived from an EVD of AA∗; however, this
approach has the numerical disadvantage that the con-
dition number is squared. In this section we will work
directly on A. We propose a Jacobi-type algorithm for
the calculation of the decomposition; as far as we know,
this has not appeared in the literature yet. The deriva-
tion is analogous to that of its Hermitian EVD counter-
part [8].

By left multiplication of A with a Jacobi-rotation af-
fecting rows p and q, and right multiplication with its
transpose, the Frobenius-norm of the (off-)diagonal part
of A can only be changed through the transformation
of the entries app, apq and aqq. Let us represent the
Jacobi-rotation by

J =

(

cosα − sin α ejφ

sin α e−jφ cosα

)

. (10)

The off-diagonal entry of

(

bpp bpq

bqp bqq

)

def
= JT ·

(

app apq

aqp aqq

)

· J (11)

is then given by bpq = 1
2 GT · V, in which

V T def
= (cos 2α, sin 2α cosφ, sin 2α sinφ) , (12)

GT def
= (2 apq, aqq − app,−j (aqq + app)) . (13)

Hence bpq can be made zero by choosing V as a real
unit-norm vector that satisfies

(

Re(GT )
Im(GT )

)

· V =

(

0
0

)

. (14)
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The elements of the optimal Jacobi rotation follow from
cos α =

√

1 + cos(2α)/2 and sin α eiφ = (sin(2α) cos φ+
i sin(2α) sin φ)/(2 cos α). By choosing the first entry
of V to be positive, J can be restricted to the inner
rotations (α ∈ (−π/4, π/4]).

If we assume that apq was the off-diagonal entry with
largest modulus, then the squared Frobenius-norm of
the off-diagonal part of A was reduced with at least a
factor 1− 2

I(I−1) . Hence, by repeating this procedure we

necessarily converge to a diagonal form. (In practice, we
address the off-diagonal entries in a cyclic way.) A com-
plex phase of the diagonal entries can be incorporated in
the overall unitary factor. This is a constructive proof
of Theorem 1.

4 PREWHITENING-BASED COMPUTA-

TION

Let us assume that a classical prewhitening, i.e., diag-

onalization of C
(1,1)
Y , has been carried out. We con-

sider then the transformed observation vector Z
def
=

S−1UHY , and the task becomes the estimation of the
unitary matrix V.

The classical approach is to exploit conditions on the

structure of C
(2,2)
Z = Cum{Z,Z∗, Z, Z∗}. Due to the sta-

tistical independence of the components of X, we have

(C
(2,2)
Z )i1i2i3i4 =

∑

i

κi vi1iv
∗
i2ivi3iv

∗
i4i, (15)

in which κi
def
= Cum{xi, x

∗
i , xi, x

∗
i }, which we will write

as

C
(2,2)
Z = C

(2,2)
X ×1 V ×2 V∗ ×3 V ×4 V∗, (16)

in which C
(2,2)
X = diag{κ1, . . . , κI}. In [1] the condition

of diagonality of C
(2,2)
X is exploited in a simultaneous

Hermitian EVD:

A
(2,2)
1 = V · D

(2,2)
1 · VH

...

A
(2,2)
K = V · D

(2,2)
K · VH . (17)

A
(2,2)
k ∈ C

I×I (1 6 k 6 K) are Hermitian matrices,

derived from C
(2,2)
Z , and the goal is to estimate V as

the unitary matrix that makes D
(2,2)
k (1 6 k 6 K) si-

multaneously as diagonal as possible in the Frobenius
sense. In [10] it is shown that the problem can also be
rephrased as

Ã
(2,2)
1 = V · D̃

(2,2)
1 · VT

...

Ã
(2,2)

K̃
= V · D̃

(2,2)

K̃
· VT , (18)

in which D̃
(2,2)
k (1 6 k 6 K) are (theoretically) diago-

nal complex matrices. We will call this a simultaneous
Takagi factorization.

For sources that are non-circular at order 4, we may

also consider C
(4,0)
Z = Cum{Z,Z,Z, Z}. We have

(C
(4,0)
Z )i1i2i3i4 =

∑

i

κ̃i vi1ivi2ivi3ivi4i, (19)

in which κ̃i
def
= Cum{xi, xi, xi, xi}, which we write as

C
(4,0)
Z = C

(4,0)
X ×1 V ×2 V ×3 V ×4 V, (20)

in which C
(4,0)
X = diag{κ̃1, . . . , κ̃I}. This again leads to

a simultaneous Takagi factorization:

A
(4,0)
1 = V · D

(4,0)
1 · VT

...

A
(4,0)
L = V · D

(4,0)
L · VT . (21)

By taking this extra information into account, we may
expect to enhance the accuracy. In addition, we may

also have Eq. (7) and equations related to C
(3,1)
Z .

In [4, Section 4] we proposed a Jacobi-type approach
to solve a simultaneous Takagi factorization. This tech-
nique has independently been derived in [10]. [4] men-
tions that the technique can also be used for a simultane-
ous Takagi factorization combined with a simultaneous
Hermitian EVD, which applies when one decides to re-
sort to Eqs. (17) instead of Eqs. (18). It was shown that
the computation of an elementary rotation amounts to
the computation of the dominant eigenvector of a real
symmetric (3 × 3)-matrix. One can associate weights
to the different equations, depending on their supposed
relative reliability and importance. In case one starts

with a “full” prewhitening, in which also C
(2,0)
Y is di-

agonalized, under the conditions specified in Section 2,
the remaining unknown factor is real orthogonal. The
computation of an elementary rotation then amounts to
the computation of the dominant eigenvector of a real
symmetric (2 × 2)-matrix.

5 SOFT WHITENING

It seems strange to consider second-order constraints
on the mixing matrix as infinitely more reliable than
higher-order constraints (note that (2) is the only equa-
tion that is explicitly affected by Gaussian noise). In
this section we will handle second- and higher-order con-
straints simultaneously, instead of sequentially. With-
out loss of generality, we assume that I = J . The
problem of dimensionality reduction will be discussed
in Section 6.

If we do not perform an explicit prewhitening, then
we obtain a weighted system of equations of the type

B1 = M · D1 · M
H

...

BP = M · DP · MH (22)
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B̃1 = M · D̃1 · M
T

...

B̃P̃ = M · D̃P̃ · MT . (23)

If possible, we assume that (an estimate of) the noise

contribution to C
(1,1)
Y has been subtracted. If not (e.g.,

due to an unknown colour of the noise), then the equa-

tion related to C
(1,1)
Y can be dropped or given a little

weight.
(The problem is reduced to the one in Section 4 by

picking one of the subequations of (22) (and possibly
(23)) and giving them an infinite weight.) For a set
of equations like (22), an algorithm has been proposed
in [11]. This technique can easily be adapted to take
(23) into account as well. One only has to make sure
that in the Z-steps of the extended QZ iteration, the
contributions related to (23) are complex conjugated.
An alternative scheme is proposed in [7].

6 DIMENSIONALITY REDUCTION

Let us assume that J > I, that Fp ∈ C
J×J is the equiv-

alent of Bp (1 6 p 6 P ) and F̃p̃ ∈ C
J×J the equivalent

of B̃p̃ (1 6 p̃ 6 P̃ ). From (22) and (23) it is clear that

the column space of Fp and F̃p̃ is equal to the column
space of M. This vector space can be estimated as the
space generated by the dominant left singular vectors of

(

F1 . . .FP F̃1 . . . F̃P̃

)

, (24)

and I itself can be determined by looking for a gap
in the singular value spectrum. If the dominant sub-
space is represented by X ∈ C

J×I with orthonormal
columns, then a dimensionality reduction can be real-
ized by taking Bp = XHFpX and B̃p̃ = XHF̃p̃X

∗.

However, when resorting to estimates Ĉ
(2,0)
Y , Ĉ′

(1,1)

Y (a

noise-compensated version of Ĉ
(1,1)
Y ), Ĉ

(2,2)
Y , Ĉ

(3,1)
Y and

Ĉ
(4,0)
Y , this is in principle not equivalent to maximization

of

f(X)
def
= w2

1 ‖X
HĈ′

(1,1)

Y X‖2 + w2
2 ‖X

HĈ
(2,0)
Y X∗‖2

+w2
3 ‖Ĉ

(2,2)
Y ×1 XH ×2 XT ×3 XH ×4 XT ‖2

+w2
4 ‖Ĉ

(3,1)
Y ×1 XH ×2 XH ×3 XH ×4 XT ‖2

+w2
5 ‖Ĉ

(4,0)
Y ×1 XH ×2 XH ×3 XH ×4 XH‖2, (25)

although the two approaches are usually close. One
could, e.g., start an Alternating Least Squares (ALS)
iteration, in analogy with [5]. Typically, in iteration
step k a column-wise orthonormal matrix X(k) is calcu-
lated of which the column space is equal to the space
generated by the dominant left singular vectors of the

matrix containing all the columns of w1 Ĉ′
(1,1)

Y X(k−1),

w2 Ĉ
(2,0)
Y X(k−1)∗ , w3 Ĉ

(2,2)
Y ×2 X(k−1)T

×3 X(k−2)H

×4

X(k−3)T

, w4 Ĉ
(3,1)
Y ×2 X(k−1)H

×3 X(k−2)H

×4 X(k−3)T

and w5 Ĉ
(4,0)
Y ×2 X(k−1)H

×3 X(k−2)H

×4 X(k−3)H

.

7 CONCLUSION

For non-circular random variables more statistics are
available than for circular random variables. In this pa-
per we have exploited this extra knowledge in the con-
text of BSS. Different approaches were derived, depend-
ing on the relative importance of the statistics.
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