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ABSTRACT

The unit pulse response of a linear-in-the-parameters
model lies in a given finite-dimensional subspace. This
paper studies the problem of selecting a good basis for
this subspace, in the case where it is known that the
power spectral density of the input signal of the model
is bounded, below and above, by two known power spec-
tral densities. We attempt to make the condition num-
ber of the correlation matrix of the internal signals of
the model as small as possible for the worst possible
power spectral density of the input signal.

1 Introduction

This paper is concerned with linear, stable, linear-in-
the-parameters models, whose general form is depicted
in Fig. 1. In this figure, ¢ is the advance operator, G (z),
k =1,...,n, are stable transfer functions, and the sig-
nals zy(t) are the internal signals of the model. Many
adaptive filters can also be put in this form, in which
case the weights wy, of the model become time-variant.

Referring to Fig. 1, the transfer function of the linear-
in-the-parameters model is given by

Glziw) = 3" wi Gu(2) = w*G(2),
k=1

where the superscript ” denotes complex conjugation
followed by vector or matrix transposition, and where
lower case letters in boldface represent column vectors.
In many applications one chooses the weights that make
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Figure 1: A general “linear in the parameters” model.

the model’s output signal y(t; w) as close as possible, in
a least squares sense, to a given desired signal d(t).

It is clear that the transfer functions G(z;w) lie in
the finite-dimensional subspace spanned by the transfer
functions G1(2), ...,Gn(z), which we will assume to be
linearly independent. Anyone attempting to use a model
of this kind has to address two problems:

1. select an appropriate subspace, and
2. select a basis for the chosen subspace.

The first problem is quite difficult, so one usually uses
a FIR model, in which case Gy = z'~*. Fortunately,
there exist some theoretical results that indicate that
FIR models are the best choice if the only known a priori
knowledge about the system we are trying to model is
that it has some degree of asymptotic stability [1, 2].
More precisely, an FIR will minimize the worst modeling
error if it is only known that the poles of the system we
are trying to model lie inside a circle of radius R < 1,
and that the energy of its unit pulse response is not
larger than a given bound. There exist also classes of
systems for which the best model is a Laguerre model [3],
or a more general generalized orthonormal basis function
model [4, 5, 6].

Once the subspace has been selected, one has to face
the second problem: among the infinite number of basis
(when n > 1) of the subspace, select one with “good
properties”. For example, one may be interested in us-
ing a basis than makes possible a cascade implementa-
tion of the model (e.g., a transversal filter), instead of
the parallel implementation depicted in Fig. 1. In this
paper we will study another possibility: we will attempt
to choose a basis for which the condition number of the
correlation matrix of the internal signals zj(t) of the
model is as small as possible, given that the power spec-
tral density of the input signal belongs to a given class
of power spectral densities. From a practical point of
view this is highly desired, not only because the model
will have good numerical properties [7], but also because
adaptive algorithms of the LMS family will converge
faster to the optimal weights (if and when they are used
to adjust the model’s weights) [8].



The rest of the paper is organized as follows: in sec-
tion 2 we present an sub-optimal solution to the problem
posed in the previous paragraph; in section 3 we illus-
trate the main results of the paper with an example; and
in section 4 we present some final remarks.

2 The problem and a sub-optimal solution

We will only analyze the case in which the power spec-
tral density of the input signal, denoted by ®,(el), is
known to satisfy the condition

(l)u(eiw) S @U(eiw) S (iu(eiw), vw:

where ®,,(e!“) and ®, (i) are given absolutely contin-
uous power spectral densities.!

The elements of the correlation matrix, R, of the in-
ternal signals of the model are the inner products be-
tween the signals z(t), Using Parseval’s theorem, these
inner products can be computed easily in the frequency
domain, yielding

1 [t
R=—

2r J_,

G(e¥)G" (') () dw.

It is well known that one has [9]
)\max(R) = max 'wHR'w,

wHw=1

and that
Amin(R) = min w’Rw.

wHw=1
In our case, trivial algebraic manipulations yield

n

+oo
w'Rw :/ Zw;‘Gi(iw)
- li=1

This leads to the tight bounds

2
d, (iw) dw.

w'Rw < w'Rw < w'Rw

(the matrices R and R are defined in the obvious
way, replacing @, (e**) by &, (e**) and &, (e'*), respec-
tively). Elementary considerations allow us to conclude

that
Amin(B') g Amin(}?’) < Amax(lz) < /\max(R)-

It follows that the square of the condition number of R
satisfies the bound

Amax(R) _ Amax(R)

Amin(}?') = AInin (B') '

Instead of attempting to minimize the left-hand side of
this inequality, which is difficult due to its dependence
on the power spectral density, we will minimize its right-
hand side, which is easy. Since this bound is not tight,
our solution will be sub-optimal.

!In [7] we treated only the case ®4(el*) = a®,(e*), with
a> 1.

If the elements of the vector H(z) are a known basis
of our subspace, then any basis is given by

G(z) =TH(z),

where T is any non-singular n x n matrix. Let
1 +m

:ﬁ .

S H(e*)H" (') &, () dw
be the correlation matrix for the known basis, with §
and S defined in a similar way. Clearly, one has

R=TST".

Using this parameterization for G(z) the square of the
condition number of R becomes a function of T, viz.,

Amax(T'ST™)

&(T) = m;

which has an upper bound that is also a function of T,
viz.,

Amax (T ST™)

Amin (TSTH) "

Without loss of generality we may assume that S =1
(the identity matrix); for this to happen the fixed basis
must the orthonormal with respect to the power spectral
density ®(ei“).2 Using this assumption and replacing T
by its singular value decomposition, T = UXV?, yields

R(T) =

Amax(EVESVE)
)\min (22)

(Since U and V are unitary matrices, £(T) does not
depend on U.) Because (X, V) is homogeneous in X,
and because T must be non-singular, we will force the
smallest singular value of ¥ to be one. This yields

R(X,V) =

R(Z,V)= max w’IVISVZw,

whw=1

Since ¥ > I, it follows that

Omin = 1.

(Zw)?(Bw) > 1.
Thus,

max w'EXVISVIw > max w? VISV w.

wHw=1 wHw=1

Since V is an unitary matrix we finally have
(2, V) = Amax(S).

When ¥ = I equality holds in the previous inequality
irrespective of the value of V.3 Thus

min R(T) = Amax(S)-

non-singular T

2A Gram-Schmidt orthonormalization can be used to replace
any basis by an orthonormal basis.

3With this choice of = we may use T to diagonalize S, keeping
S=1.



Our previous equation shows that we have found a
solution to the sub-optimal problem we posed in this
section. Many more solutions exist, with 3 > I. Unfor-
tunately, we do not have space to describe them here.
We will only mention that the extra degrees of freedom
can be used, e.g., to make the condition numbers of S
and S equal or to minimize the condition number for a
nominal power spectral density.

To summarize, we start with an arbitrary basis H (2),
replace it with an orthonormal basis with respect to
®(ei¥). The resulting basis with minimize &(T). Op-
tionally, we may compute S and diagonalize it.* The
value of Amax (S) will give an upper bound of the worst
condition number we may encounter. The first orthonor-
malization may also be done with respect to ®(ei¥), in
which case 1/Anin(S) will give an upper bound of the
worst condition number we may encounter.

2.1 The continuous-time case
Since the standard bilinear transformation

a-+s dz Vv2a \/2ad
z= = = s
a—s’ z a+sa—s

induces an isomorphism between the s and z planes [11],
all our results can be converted to the continuous-time
domain simply by transforming signals using the rule

U)o L ()

and systems and power spectral densities using the rule

F(z) «— F(‘”s).

a— s

3 An example

In this example we will show that the upper bound de-
termined in the previous section can be reasonably tight,
and to show that apparently reasonable bases can give
rise to condition numbers much larger than the best pos-
sible value. In order to allow a comparison of the results
presented here with those presented in [7], we will spec-
ify some initial bases of our subspace, and the upper
and lower bounds of the power spectral density, using
Laplace transforms. To perform all necessary compu-
tations, they were transformed into Z-transforms using
the ideas of subsection 2.1 using a = 1 (any positive
value of a will produce the same results).

On our example the bounds for the input power spec-
tral density are

10 100
)] = =
26) = 5510 T @2+ 100
and )
_ 30 900
B(s) = =
) =|3520| . = or+400

4The previous two steps can be done at the same time using a
generalized eigenvalue decomposition [10].

We will analyze four different bases for our chosen sub-
space. The first three are as follows:

( V2

Gi(s) = 51
B1: Ga(s) = s"%
Gs(s) = Hiﬁg
[ Gals) = 245
[ Gi(s) = 22
B2: { Ga(s) = %
Gs(s) = GrmtsromTs
| G1(9) = et e
and
Gi(s) = &
By | 0= eHs
Ga(s) = GRS
Ga(s) = VB(s—1)(s—2)(s—3)

(s+1)(s+2)(s+3)(s+4) *

It can be easily verified that all basis functions pre-
sented above have unit energy. The impulse responses
gx(t) of the basis B3 are orthonormal in the standard
sense [12, 13]. A fourth “optimal” basis, B4, was com-
puted, following the recommendations of section 2, and
a fifth “symmetric” basis, B5, was also computed.

In Table 1 we present the values of Apax(R)/Amin(R),
which is the square of the condition number of R, for the
different bases, and for three power spectral densities:
®, @, and for the worst power spectral density of the
form

P(iw), if 0 < |w| < w,

®(iw), if |w| > w,

or of the form

P(iw) = {

|Basis | @ | @ | worst |
B1 35025 | 32232 | 43930
B2 5418 4115 | 10141
B3 2.296 | 1.574 | 4.906
B4 1.000 | 1.461 | 3.218
B5 1.209 | 1.209 | 2.669

iw), if0< |w| <wo
iw), if jw| > w,.

[

Table 1: Square of the condition numbers of R for the
bases described in the text.

Note the very bad performance of the bases B1 and
B2, and the good performance of the basis B3, all when



compared with the “optimal” bases B4 and B5. In par-
ticular, the basis B1, which is some times used in “par-
allel” versions of IIR adaptive filters [14], is very bad.
Using a cascade of low-pass sections, as in the basis B2,
is also a bad idea. Using a cascade of all-pass sections,
tapped by low-pass sections,® as in the basis B3, pro-
duces in this case very good results.

The good performance of the basis B3 can be ex-
plained by the fact that this basis is orthonormal with
respect to a flat (unit) power spectral density, and by the
fact that ¥(iw) is approximately flat in the pass-bands
of Gy, (iw) .

Finally, the worst performance of the basis B4 (3.218)
should be compared with the minimum value of £(T),
which in this case is 3.302. This easy to compute bound
is therefore reasonably tight.

4 Final remarks

The previous example demonstrates that the basis func-
tions of a linear-in-the-parameters model or adaptive fil-
ter has to be chosen with care. Some bases that are easy
to implement are quite bad in terms of the condition-
ing of the correlation matrix of its internal signals. A
filter composed by orthogonal transfer functions in the
classical sense performs quite well when the power spec-
tral density of the input signal is reasonably flat in the
pass band of the filters. In particular, an FIR filter,
being composed by orthonormal basis functions (in the
classical sense), usually performs well when the power
spectral density is reasonably flat in the entire frequency
axis.5
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