SIMPLIFYING HAND WRITTEN DI1GIT RECOGNITION USING A
GENETIC ALGORITHM

A. D. Parkins & A. K. Nandi
Signal Processing and Communications Group,
Dept. Electrical Engineering & Electronics., University of Liverpool,
Liverpool, L.69 3GJ, UK
Tel: +44 151 7944525; Fax: 444 151 7944540

e-mail:

ABSTRACT

For recognition in image data, the large number of fea-
tures can cause an unnecessary increase in the complex-
ity of the chosen classifier. It is important to select from
the available features only those that contribute new in-
formation. In many cases, an excess of features not only
does not aid classification but in fact actively reduces
performance. In this paper we use reduced complezity
of both classifier and feature set to improve accuracy
and speed of computation for the identification of hand-
written digits. We show that performances comparable
with existing classifiers can be achieved with a 200 fold
smaller network

1 INTRODUCTION

In many classification problems, the size of the feature
set can be an important consideration — larger numbers
of features increase the classifier complexity and non-
contributory “noise” features can degrade performance.
The problem is one of separating the features which aid
classification from those that hinder. One technique for
dealing with this situation is the use of a genetic al-
gorithm as a feature selector. This paper is concerned
with the use of a genetic algorithm to find an optimum
feature set for the classification of hand written digits.

2 FEATURE SELECTION

The term feature selection is applied to the task of se-
lecting those features that are most useful to a particu-
lar classification problem from all those available. Con-
sider a feature set, F = {fo, f1,..., v} If fo and f;
are dependent, that is they always move together, then
one of these could be discarded and the classifier has
no less information to work with. This has the bene-
fit that computational complexity is reduced as there is
a smaller number of inputs. Often, a secondary bene-
fit found is that the accuracy of the classifier increases.
This implies that the removed features were not adding
any useful information but they were also actively hin-
dering the recognition process.

A. D. Parkins is supported by the EPSRC

a.d.parkins@liv.ac.uk, A.Nandi@liv.ac.uk

3 NEURAL NETWORKS

Artificial neural networks (ANNs) have been shown
([1],12]) to be good classifiers in hand written charac-
ter recognition problems.

The ANN used for this work was a feed-forward net-
work using a hyperbolic activation function with mo-
mentum and per-neuron adaptive learning enabled (see
section 3.1). Simulations performed with no GA com-
ponent showed that, using all 256 features, classification
performance was not increased significantly when more
than fifteen hidden layer neurons were used. Therefore,
when the genetic algorithm component was added to
keep network complexity at a minimum and provide a
constant state for comparison, the number of hidden
neurons was fixed at fifteen.

3.1 Adaptive Learning

Adaptive learning is used to adjust the learning rate of
the network, n, during the training phase. The method
used for the network uses a combination of techniques.
Adjustments are made to learning rate based on the size
of the change in the MSSE of the output. That is, if the
MSSE of the neuron output decreases by 50%, then the
learning rate for that neuron is increased by 50%. There
is also a limiter applied, so that if the MSSE increases
by more than 100%, the learning rate does not jump
by such a big amount to cause the next backpropaga-
tion phase to move a huge distance on the error surface;
this tends only to apply in early epochs when the im-
provements are huge. This has the added benefit that
there are no parameters to be set. Much of this com-
bines heuristics proposed by others — adjustment of 7
based on gradient from Silva and Almeida’s method;
more cautious increases of n than decreases from Ja-
cobs’ delta-bar-delta; and a limiting factor from Ried-
miller and Braun’s RPROP. See [3] for descriptions and
comparisons of these learning heuristics.

4 GENETIC ALGORITHMS

Genetic algorithms (GAs) have been successfully used
to select feature subsets in classification problems ([4],
[5]). Being a directed search rather than an exhaustive

search, population members cluster near good solutions;
however, the GA’s stochastic component does not rule
out wildly different solutions, which may turn out to be
better. This has the benefit that, given enough time and
a well bounded problem, the algorithm can find a global
optimum. This makes them well suited to feature selec-
tion problems — they can find near optimum solutions
using little or no a priori knowledge. An introduction
to genetic algorithms can be found in [6].

The genetic algorithm used in this case is from the
GAlib[7] C++ library. A steady state GA is used, this
is similar to the algorithms described in [8]. In each
generation a new temporary population is created and
evaluated. The worst performers from the combined
population are removed to reduce the population to its
original size and the process is repeated.

4.1 Genome Encoding

A genetic algorithm evaluates a population of test
genomes and then selects a number of them to continue
to the next generation. As such, before using a genetic
algorithm a coding scheme must be devised, where all
problem solutions are mapped on to a genome. In this
case a fixed subset of features are to be selected from a
global pool. Each available feature is assigned a unique
number and the genome is simply a list of the feature
numbers contained in the subset being evaluated, with
no feature allowed to appear more than once.

4.2 Crossover and Mutation

Mutation is the random corruption of a new genome.
In this case a feature mutator is used — a new random
feature from the total available is selected then a random
feature in the genome is selected for mutation and the
old feature is replaced with the new.

Crossover is the combining of two parent genomes to
make two new child genomes. These child genomes are
related but different from the parent genomes. A union
crossover is performed in this case. The two sets of par-
ent features are added together and any duplicates are
removed, the first child genome is created by taking the
first IV features from the union, the second child is cre-
ated by taking the last N features from the union (N is
the size of a genome, which is fixed for each simulation).

5 DATA SET

The data set used is a subset of the United States Postal
Services (USPS) digit set [9], a representative sample of
which is shown in figure 1. Each entry is a 16 x 16 image
with each pixel represented by a gray level in the range
[—1,1]. This set is divided at source into a training and
test set. In our case we have reduced the training set
such that all digits appear with equal frequency so that
there is no bias toward any one particular digit. This
training set is then further divided into a training and
validation set (see table 1).

Set | digits x classes = total
Training 360 x 10 = 3600
Validation | 180 x 10 = 1800
Testing 2700 assorted

Table 1: Data set divisions and breakdown

The validation set is normally used to stop training
a classifier before over-fitting occurs by measuring di-
vergence in performance on the training set and perfor-
mance on the validation set. In the work presented here
the validation set is not used, as early stopping does not
apply (section 6).

OILL3SHSENE5T0tLR34S L
§F01A34S5 L7510 123KS
7§78 1 1348567870123
YS67890 012334 50T%17101
234507481 ~-34s567%9

Figure 1: Sample of images from the USPS data set

6 SIMULATION

The simulation environment was set to produce fixed
length genomes. For each simulation the first population
of twenty genomes was generated by selecting random
subsets of a fixed length from the total features available
and evaluating them. This evaluation consisted of cre-
ating the appropriate feature subset for each example as
specified by the genome under evaluation then training
an MLP network for 50 epochs using the training sec-
tion of the set. The final performance measure for that
genome is then given by classification percentage on an
unseen test set. In each generation a temporary pop-
ulation, equal in size to the real population is created
(see section 4.2) by combining members from the real
population using roulette wheel selection. Each mem-
ber of this temporary set is then evaluated. This gives
a “score” for each genome in the current generation and
for each member of the temporary set. The worst ninety
percent of the real set is then replaced with the best
members from the temporary set. This process was re-
peated for 40 generations and for different genome sizes
(or numbers of features).

In other simulations with this data set it has been
found that performance improves as the number of
training epochs is increased. However, in separate sim-
ulations using different test criteria where one criteria is
better than another early on, it remains better no matter
how many training epochs are performed. Therefore, a
low number of epochs was used for the feature selection
phase to lower computation time.

7 RESULTS

7.1 Performance of ANN alone

As an example of the performance of the neural network
component alone, a simulation was performed over 4,400
epochs using all 256 available features; the first five hun-
dred epochs of which are shown in figure 2. The plots
after this point continue in the same way, performance
has saturated at approximately 88%. Surprisingly, the
validation and training sets do not diverge; this may
be because the training set is very representative and
as such does not permit over-fitting. Alternatively, the
low number of hidden neurons may have reduced the
number of free parameters enough to keep the network
general.

Table 2, and figure 3 show final performance (after
4,400 epochs) for a number of different hidden layer
sizes. These results highlight the difficulty of classify-
ing this data set. The test set scores are consistently
lower than the validation set — this is surprising because
the network is never trained on either. If both sets were
of equal difficulty then we would expect similar perfor-
mance from both. The results imply that the test set
contains more difficult (or significantly different) exam-
ples than either the training or validation set.

100 §
80 1

60 1

% Classified

40 T " " T ,
0 100 200 300 400 500
Epoch

Figure 2: Performance vs. epoch with all features (256)
used

No. of Hidden

Neurons Training | Validation | Test
5 48.47 47.50 44.87
10 89.61 90.17 85.67
15 94.19 91.06 86.40
20 97.08 93.33 87.47
25 95.17 93.00 88.00
30 97.44 92.88 87.93
35 97.97 92.39 88.60
40 97.92 92.78 88.47

Table 2: Performance with number of hidden layer neu-
rons for a train-until-zero gradient network

100 ~
k5
= 801
0
(%]
] 7 —
LO) 604/ . — Tra_lnln_g
X / — — Validation
4 — - Test
40

5 10 15 20 25 30 35 40
Neurons

Figure 3: Performance with number of hidden layer neu-
rons

7.2 Performance of feature selected set

Table 3 and figure 4 show performance with different
numbers of features. For every number of features se-
lected the GA has selected a “good” selection for the
subset. As the number of features increase, the perfor-
mance quickly saturates at approximately 90%. This
occurs near the forty feature point; after which, a dou-
bling in number of features gives less than 1% increase
in performance. Table 2 shows that for 15 neurons with
all 256 features, after 4,400 epochs the performance is
86.4%; performance has decreased with a large number
of features.

Features | % Classified || Features | % Classified

1 25.1 55 89.7
5 69.6 60 89.4
10 79.5 65 89.7
15 83.9 70 89.2
20 85.3 75 89.4
25 85.9 80 89.1
30 87.9 85 89.9
35 88.0 90 90.0
40 88.8 95 90.2
45 88.3 100 89.3
50 88.5

Table 3: Performance, after 50 training epochs, of a
15 hidden neuron neural network using best N features
selected using 40 generations of GA

8 CONCLUSION

Table 4 shows a summary of performances that others
have achieved using the same data set as has been used
in this work. Although at this stage the work in this pa-
per does not achieve performance of these levels, it has
the benefit of using a much reduced complexity classi-
fier. For example [10] uses the same network architec-
ture as was introduced in [11]; this uses approximately
100,000 connections operations to evaluate an image.
The network in this work uses 3,990 connections when

100 1

% Classified
(o] (o]
o o

N
o
L

N
o

20 40 60 80 100
No. of Features

o

Figure 4: Performance vs. no.of features selected

used with all 256 features and 450 when used with 20
features; the difference is due to the radically reduced
hidden layer size and the pre-selection of subset of sig-
nificant features. In both of these cases performance is
approximately 90%, this is a 6% performance degrada-
tion, relative to [10]’s performance, with network that
is 220 fold smaller in number of connections.

Method % Classified
Human [12] 97.5
Convolutive Neural Network [10] 95.8
Kernel density based [13] 97.8
Bayesian classifier

Support Vector Machine [14] 97.0

Table 4: Performances on the USPS data set

Direct comparisons with the alternative classifier ar-
chitectures used in [13] and [14] are more difficult. For
the support vector case, x; - x; is calculated for each
support vector, where x; is an input vector and x; is a
support vector. Each of these dot products represents
a series of multiply and add operations similar to those
that take place in a hidden layer neuron. To achieve
the performance shown in table 4, multiple binary clas-
sifiers were used each with hundreds of support vectors
— making the support vector classifier many times more
complex than the ANN classifier.

9 References

[1] Y. Le Cun, “Comparison of learning algorithms
for handwritten digit recognition,” in International
Conference on Artificial Neural Networks, Paris
(F. Fogelman and P. Gallinari, eds.), pp. 53-60,
1995.

[2] P. Suganthan, “Structure adaptive multilayer over-
lapped soms with supervision for handprinted digit
classification,” 1998.

[3] M. Riedmiller, “Advanced supervised learning in
multi-layer perceptrons — from backpropagation
to adaptive learning algorithms,” Int. Journal

[14]

of Computer Standards and Interfaces, vol. 16,
pp- 265278, 1994.

L. B. Jack and A. K. Nandi, “Genetic algorithms
for input selection in condition monitoring,” in Pro-
ceedings of COMADEM 99, (Oxford, UK), pp. 381—
388, Coxmoor Publishing, 1999.

L. B. Jack and A. K. Nandi, “Genetic algorithms
for feature selection in machine condition monitor-
ing with vibration signals,” IEE Proceedings - Vi-
sion, Image and Signal Processing, vol. 147, no. 3,
pp- 205-212; 2000.

D. E. Goldberg, Genetic Algorithms in Search, Op-
timisation and Machine Learning. Addison Wesley,
1989.

M. Wall, “Galib: A C++ genetic algorithms li-
brary.” available from http://lancet.mit.edu/ga .

K. DeJong, An Analysis of the Behaviour of of a
Class of Genetic Adaptive Systems. PhD thesis,
Dept. of Computer and Communication Sciences,
University of Michigan, Ann Arbor, 1975.

“Cedar cdrom 1: Usps office of advanced technol-
ogy database of handwritten cities,” 1992.

Y. Le Cun, B. Boser, J. Denker, D. Henderson,
R. Howard, W. Hubbard, and L. Jackel, “Hand-
written digit recognition with a back-propagation
network,” in Advances in Neural Information Pro-
cessing Systems (D. Touretzky, ed.), vol. 2, (Denver
1989), pp. 396404, Morgan Kaufmann, San Mateo,
1990.

Y. Le Cun, B. Boser, J. Denker, D. Hendersen,
R. Howard, W. Hubbard, and L. Jackel, “Back-
propagation applied to handwritten zip code recog-
nition,” Neural Computation, vol. 1, p. 541, 1989.

P. Simard, Y. Le Cun, and J. Denker, “Efficient
pattern recognition using a new transformation dis-
tance,” in Advances in Neural Information Process-
ing Systems (S. J. Hanson, J. D. Cowan, and C. L.
Giles, eds.), vol. 5, pp. 50-58, Morgan Kaufmann,
San Mateo, CA, 1993.

D. Keysers, J. Dahmen, T. Theiner, and H. Ney,
“Experiments with an extended tangent distance,”
in Proceedings 15th International Conference on
Pattern Recognition, (Barcelona, Spain), 2000.

B. Scholkopf, P. Simard, A. Smola, and V. Vap-
nik, “Prior knowledge in support vector kernels,” in
Advances in Neural Inf. Proc. Systems (M. 1. Jor-
dan, M. J. Kearns, and S. A. Solla, eds.), vol. 10,
pp- 640-646, MIT Press, 1998.

