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ABSTRACT 
 

 This paper is concerned with the development of a two- 
dimensional feed-forward functionally expanded neural network 
(2D FFENN) surface modeler. New nonlinear surface basis 
functions are proposed for the network’s functional expansion.  
A network optimization technique based on an iterative function 
selection strategy is also described. Comparative simulation 
results for surface mappings generated by the 2D FFENN, 
Multi-layered Perceptron (MLP) and Radial Basis Function 
(RBF) architectures are presented. 
 

I. INTRODUCTION 
 
 One of the main properties of feed-forward neural networks 
is that of learning an input-output mapping from a set of 
examples characterizing a real system. The network is trained 
with some examples comprising an input signal and the desired 
response. The network weights are then modified, using an 
adaptive optimization technique to minimize the difference 
between the desired response and actual response. 

Two well-known feed-forward artificial neural networks are 
the MLP and RBF. Both networks have been termed as universal 
approximators [1], [2]. That implies that if the nonlinear 
transformations are of sigmoidal or radial symmetric type i.e. the 
non-linearity is a non-constant, bounded and monotone 
increasing function, and the number of nodes in the hidden layer 
goes to infinity, then based on Universal Approximation 
Theorem [3], one may provide an approximate realization of any 
continuous function. Their performance has been demonstrated 
in various application areas such as, linear and nonlinear 
adaptive filtering [4], time series prediction [5], dynamic 
reconstruction [6] and black box modeling [7]. However, these 
networks suffer from a number of drawbacks, such as 
convergence characteristics and network topology selection [3].  

MLP networks employ sigmoidal basis functions that cannot 
model local non-linearity very well. Also, their nonlinear in-the-
parameters structure requires complex and computationally 
intense learning algorithms, such as the back-propagation 
algorithm. Furthermore, there is no way to say whether a single 
hidden layer is optimum to support the MLP network learning or 
a way to specify the exact number of hidden neurons required in 
order a system to be generalizable. On the other hand, RBF 
networks that employ radial symmetric functions, cover only 
small-localized regions and therefore they cannot model well 
global non-linearity. Moreover, dealing with RBF networks 

great difficulty is experienced in selecting the appropriate 
centers for the radial basis functional expansion. Additionally, a 
large number of basis functions is usually required in order to 
cover high dimensional input spaces. Nonetheless, simple 
learning algorithms may be used for training, as the RBF 
structure is linear in the parameters. 
  In this paper the design of a new single hidden layer, linear 
in the parameters, feed-forward functionally expanded neural 
network surface modeler (2D FFENN) is presented. Previously, 
a 1D FFENN has been successfully applied to time series 
prediction [8], [9] and co-channel interference [10]. The aim of 
this new design is to explore the modeling capabilities of such a 
feed-forward network in two dimensions. The main objective is 
to approximate a nonlinear continuous surface to an arbitrary 
degree of accuracy. As its predecessor 1D FFENN design, the 
design of 2D FFENN can be considered as a hybrid neural 
network. In essence, is an extended model that incorporates the 
modeling capabilities of the existent architectures of MLP, RBF 
and volterra neural networks [3], VNN. 

The paper is organized as follows. In section II an overview 
of the complete 2D FFENN is given. Section III describes the 
characteristics of a function pruning technique, which is 
developed to optimize the network’s functional expansion. In 
section IV, a number of representative simulation results are 
presented that illustrate the surface modeling capabilities of the 
network and the results are compared with the well-known 
architectures of MLP and RBF networks. We conclude the paper 
with section V. 

II. THE 2D FFENN STRUCTURE 
 

The topology of the 2D FFENN structure is depicted in 
Figure 1. Two layers describe it: a single hidden layer and an 
output layer. The hidden layer acts like a feature detection layer. 
As the learning process progresses, the hidden neurons begin to 
gradually discover the salient features that characterize the 
training data. This is achieved by the functional expansion unit, 
which performs a nonlinear transformation of the input data into 
a new space called the feature space. The output layer of the 
network comprises a set of linear combiners that join together all 
the weighted functionally expanded inputs to form a single 
output. 

The functional expansion unit of 2D FFENN takes two 

inputs, 1t and 2t , which are the grid indices that specify the 
two-dimensional data set to be modeled. Both inputs are 
normalized to within the range (+1, -1).  



 

 
 

Figure 1: The 2D feed-forward functionally expanded neural 
network (2D FFENN) structure 

 
The entire functional expansion is described by F(k), as follows: 
 

F(k) = sum of N (linear & nonlinear) basis functions 
 
In a similar fashion to the functions described in [11], the linear 
terms of the expansion are the original input terms, whilst the 
nonlinear terms are a combination of trigonometric and 
polynomial two-dimensional functions of the input.  

The modeling efficiency of the 2D FFENN is the result of 
this hybrid functional expansion. These functions have been 
chosen in such a way that combine the global approximation 
capability of the MLP network, the local approximation 
capability of the RBF network and also emulate the modeling 
capability of the VNN.  

In general, a Multi-Input Multi-Output (MIMO)         
FFENN (n, N, m) will completely be specified for a given 
number of n inputs and m outputs by a similar F(k) expansion.  

The output for the two layer, two input and N-term 
functionally expanded FFENN (2, N, 1) is defined as follows: 
 

1. Hidden layer functional expansion vector at time, k:  
                       (1) ( ) ( ) ( ) ( )[ T

N kfkfkfkF ,.......,, 21= ]

]

and the associated weight vector, as: 
                   (2) ( ) ( ) ( ) ( )[ ]TN kwkwkwkW ,........,, 21=

2. Single 2D FFENN output: 
                                               (3) ( ) ( ) ( )kWkFky T ⋅=

3. Prediction error: 
                                              (4) ( ) ( ) ( )kykdke −=

where d(k) is the reference response. 
 

Network weight adaptation is achieved using the 
exponentially recursive least squares (RLS) algorithm [12]. 
Complex training algorithms are not required, because of the 
linear in-the-parameters network structure. 

The function selection unit shown in Figure 1 is used in 
order to reduce the size of the functionally expanded network. 
The scope of the functional expander is to introduce to the 
network new functional terms in order to enhance its nonlinear 
approximation ability. However, this process can lead the 
expansion to very large and highly redundant networks. For this 
reason, a pruning or function selection scheme is occupied to 
choose only the most significant functions. 
 

III. PRUNING OF THE FULLY EXPANDED 2D FFENN 
 

A large functional expansion can achieve better prediction 
results. Nevertheless, depending on the type and level of 
complexity of the surface to be modeled the network may 
assume too many free parameters. This is because a much 
smaller number of functions are probably needed to characterize 
the specific function or surface. For this reason, a pruning 
scheme is utilized. Its task is to select only those functions, 
which have a significant contribution to the output of the 
network. In other words, we want to choose only the dominant 
weights of the functional expansion. 

Pruning is performed by an iterative pruning-retraining 
approach. Initially, the fully expanded network structure is 
trained on the training data set and the maximum surface level 
error (MSLE) value on the training set is computed. In 
mathematical terms, the MSLE (maximum surface level error) is 
defined as follows: 
 

( )[ ] ( )[( )kekeabsMSLE minmax −=                 (5) 
 

The insignificant functions in the expansion model are set with 
the smallest weights; these are successively pruned one by one 
starting with the least significant one. After each insignificant 
function is been pruned the output of the network is computed.  
Moreover, the resulting MSLE is also computed at each pruning 
stage. The pruning process is stopped at the stage when a pruned 
network structure is found to be incapable of reducing the output 
MSLE on the training set to the desired level. The network 
structure can be retrained after each time pruning is applied, 
with the same train set, in order to determine the optimal weights 
for the remaining un-pruned functions. 

Furthermore, it is important to note that pruning is only an 
optimization strategy and can be omitted when there is no 
advantage to be gained. It effectively achieves to reduce the size 
of the functional expansion, but in the downside requires off-line 
training (supervised learning) and much longer computation 
time.  
 
 
 
 
 
 
 
 
 



 IV. SIMULATION RESULTS  
 

In this section we present comparative simulation results of 
the new 2D FFENN with the existent MLP and RBF networks. 
In order to illustrate the modeling capability of the 2D FFENN 
and the effectiveness of the pruning strategy, let us produce a 
model for the continuous surface described by equation 6. The 
choice of this function is based on its surface characteristics that 
resemble the nature of a sea wave.  
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Figure 2 displays the surface characteristics of the two-
dimensional function. The training set is constructed from the 
function ( )21,ttT  by sampling the domain from –1.0 to +1.0 in 
two dimensions at equally spaced grid points, at an interval of 

0.1 for both 1t  and 2t . The 21 spacing indices generated for 
each one of the dimensions, correspond to the network inputs. In 
Figure 3 the mapped surface is presented. Modeling was 
achieved by the 2D FFENN using a functional expansion of 59 
functions and batch training was performed for 5 times. Pruning 
has not been considered, so at this stage all 59 functions 
contribute to the model. The training error is shown in Figure 4. 
Based on the results, we can conclude that the 2D FFENN is 
able to produce considerably good surface mappings even after 
trained for a small number of epochs.  

In order to test the efficiency of the pruning strategy 
employed by the 2D FFENN let us simulate for the same 
surface, but this time using the MSLE to choose the most 
appropriate functions for modeling. The results are shown in 
Figure 5. From the results is evident that pruning can effectively 
reduce the dimensionality of the functional expansion. In this 
example, 13 functions have been discarded. The size of pruning 
achieved mainly depends on the specific characteristics of the 
surface to be predicted and the number of training epochs. The 
algorithm allows the user to retrain also after each time pruning 
is performed. This leads to better weight adaptation achieving a 
smaller mapping error. However, in the downside the number of 
candidate-pruned functions is expected to be reduced. In general, 
the minimum the network training performed the maximum the 
pruning that can be achieved. Obviously this trade-off is directly 
reflected to the modeling accuracy requirement.  

Next, in Figure 6, the MLP network training error is given. 
From the results, it appears to be inferior to the 2D FFENN. It 
requires 500 epochs under supervised batch training and 
approximately a network expansion of 15 hidden neurons to 
produce good but not better results than the 2D FFENN. 

On the other hand, the RBF network can compete the 
performance of the 2D FFENN at the expense of a large hidden 
neurons expansion. The associated training error for an RBF 
network of 42 hidden neurons is shown in Figure 7. 

Finally, in order to validate the performance of the 2D 
FFENN, MLP and RBF networks, a test data set was constructed 
using grid spacing of 0.03195, a value chosen to avoid 
replication of training set points, forcing the network to 
interpolate. All results are shown in Table 1. 

Network Training 
MSLE 

Validation 
MSLE         

2D FFENN, 
No Pruning 

0.00259 0.00221 

2D FFENN, 
MSLE Pruning 

0.00045 0.00042 

MLP 0.00785 0.00722 

RBF 0.00104 0.00093 

Table 1: Network Training and Validation Errors 

 
V. CONCLUSION 

 
In this paper a two-dimensional functionally expanded 

neural network was presented. The network’s backbone 
architecture was described and comparative simulation results 
were given. An efficient function pruning strategy was also 
devised. The comparative results obtained by the proposed 
system demonstrate the effectiveness of such a network structure 
to produce surface mappings under short training times. 
 We are currently extending the proposed network design to a 
multi-scaled functionally expanded structure in order to enhance 
its nonlinear modeling ability for surfaces were discontinuities 
are present. Our future development plan includes the extension 
of 2D FFENN to a three-dimensional volume modeler, 3D 
FFENN, which lies on straightforward modifications to the 
existent system. The main application area of interest for the 
proposed system is target detection from two-dimensional data 
sets. For example, target detection in sea by sea-clutter 
suppression. 
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Figure 2: Original Surface, ),( 21 ttT  

 
Figure 3: Modeled Surface by 2D FFENN 
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Figure 4: Error Surface – 2D FFENN, No Pruning,                      
59 Functions, 5-epochs 
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Figure 5: Error Surface – 2D FFENN, MSLE Pruning,              
46 Functions, 5-epochs 

 

10-3 

Figure 6: Error Surface – MLP, 500 epochs, 15 H. N 
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Figure 7: Error Surface – RBF, 42 Hidden Neurons 
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