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ABSTRACT
Non linear image processing operators give excellent
results in a number of image processing tasks such as
restoration and object recognition. However they are
frequently excluded from use in solutions because the
system designer does not wish to introduce additional
hardware or algorithms and because their design can appear
to be ad hoc. This paper explains how various non linear
image processing operators may be implemented on a basic
linear image processing system using only convolution and
thresholding operations.
As well as describing novel algorithms for implementation
within a linear system the paper also explains how the
optimum filter parameters may be estimated for a given
image processing task.

1 INTRODUCTION
Mathematical morphology [1] consists of a powerful set of
tools for image processing which may be used for many
tasks including noise reduction and object recognition.
However its definition in terms of set theory and
subsequently in terms of lattices can make it appear remote
from more mainstream operations such as linear filtering.
Other non linear methods such as order statistic and
weighted order statistic (WOS) [2] filters are excellent at
removing noise and preserving image structure but only the
special case of the median appears to be in widespread use.
The sorting operations are thought to be computationally
expensive and the hardware implementation is perceived as
comparator based and inherently incompatible with linear
multiply-accumulate architectures.
Frequently in assembling a large hardware or software
solution to an image processing problem the system
designer chooses to discount non linear operations as they
require additional hardware or software extensions. This
paper demonstrates strategies for decomposing a number of
non linear operators so that they may be implemented
through standard linear hardware and software
configurations. In particular mathematical morphology,
rank order statistic filters including the median and
weighted median operators will be discussed.

BINARY IMAGE PROCESSING
Many documents including pages of text and faxed items
may be adequately represented by only two intensity levels.
The non linear image processing techniques mentioned
above may be used for a number of common tasks
including restoration of degraded text, noise removal, OCR
and object recognition.

ORDER STATISTIC FILTERS
All analysis in this paper will be based on sampled values
on a 2D Euclidean grid. It involves filtering an image I(m,n)
with M×N pixels, where 0 ≤m≤ M-1 and 0 ≤n≤ N-1.
In all cases the image I(m,n) is processed by a filter defined
within an overlapping sliding window B(k,l) where   -K ≤ k
≤ K , -L ≤ l ≤ L. The filter window therefore consists of a
region of support of (2K+1) × (2L+1) pixels with origin at
B(0,0). The region of support of B(k,l) has been assumed to
be rectangular with odd dimensions for computational
simplicity. Where a non rectangular window is required, i.e.
a cross or circle, the pixels within the overall region of
support of the window which are not to be used in the
calculation are set to 0 otherwise they are set to 1.  The
order (or size) of the filtering window is expressed as |B|
and is calculated as the sum of elements in B. For the basic
rank order filter ψr applied to a set of input values x=(x0,
x2,…, x|B|-1 ) the output is defined as the r th largest value in
the input window.
Well known special cases of rank order filters are the
minimum when r=1, the maximum when r = |B| and the
median when r = (|B|+1)/2. For simplicity it is assumed
that |B| always remains odd. More complex examples of
rank order filters can be formed by (a) duplicating the input
variables which results in weighted order statistic (WOS)
filters [2] and (b) forming functions of the ordered variables
which results in filters such as the Huber [3] and ∝ trimmed
mean [4]. Further details of these filters can be found in the
references.
Where the filter is applied to binary image pixels the set of
x is, xi∈{0,1} for all i. Therefore the input window B(k,l)
will contain |B| variables which can only take the values 0
and 1. Assuming that there are z, 0s and |B|-z, 1s the set of
inputs from the window after rank ordering is {1, 1,……1,
0, 0……0}  i.e. a string of 1s followed by a string of 0s. The
filter output is equal to the r th rank order pixel in the
window. This will therefore be 1 if the number of 1s in the
window B is greater than or equal to r i.e. if   |B|-z ≥  r
otherwise the filter output will be 0.
The rank order filter ψr applied to the image I, within a
window, B(k,l) centred around the reference pixel, B(0,0)
can be written as,







 ≥++
=

∑
=∈

otherwise

rlnkmIif

I
r

ø lkBlk

0

),(1

)( 1),(),(

      

(1)

Therefore in the binary case the rank order filter ψr reduces
from a sorting process to a count of the pixels of I falling
within the window B, followed by a threshold.



IMPLEMENTATION OF MORPHOLOGICAL AND
RANK ORDER OPERATORS
Consider the following statement:
All rank order filters including the median and a number of
the fundamental SSP (set-set processing) tasks within
mathematical morphology may be implemented
simultaneously for binary images via a single linear
(multiply-accumulate) operation carried out between the
original image, I, and the filter window, B, followed by
thresholding at an appropriate level.

The convolution operator is central to all linear software
and hardware image-processing systems. The convolution
H(m,n) between an image I and window B is defined as
follows:
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The above operator is used in edge detection, linear
smoothing and sharpening.
In order to implement the morphological operators and rank
order filters, the image I and the filter window, B, are
convolved to produce a single image, H. Although both I
and B are binary, the result of their convolution, H, is a
greyscale image with pixel values in the range, 0 to |B|.
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The image, H, will be shown to consist of a stack of all the
outputs of the rank order filter ψr , for every value of r. The
required rank order filtered output image, ψr(I), may be
obtained by thresholding the image, H, at the appropriate
value of r.
The correlation of the image, I, with the window, B, is
equivalent, in the binary case, to an operation which counts
the number of pixels within the window, B,  for which I=1 ,
and sets the corresponding pixel in image H, to this value.
This leads to the greylevel image H, in which the pixel
values reflect the extent of window occupancy in the
original image I.
The binary images resulting from filtering by ψr,  i.e. the
rank order, morphological and median filters are obtained
by thresholding H at the appropriate level, r. The following
filters may be obtained,

Rank order filter           ψr= T r [ I∗B]                              (4)
Median Filter         Med B (I) = T (|B|+1)/2 [ I∗B]               (5)
Dilation                   I ⊕ B = T 1 [ I∗B]                              (6)
Erosion                   I  - B = T |B| [ I∗B]                             (7)

where T t[N] is a thresholding function defined as
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An example is shown in Figure 1. Figure 1(a) shows a
simple original image and Figure 1(b) shows a noise
corrupted version. The objective is to filter the noisy image
in order to recover the original or an image which is as
close as possible to it. As can be seen in Figure 1(c) the

resulting greyscale image contains, at each level, every rank
order filter including the erosion, the dilation and the
median. In this simple case the median is the best filter as it
recovers the original image precisely.

WEIGHTED MEDIAN FILTER
In order to preserve finer image structure such as corners
and straight lines it is often necessary to give the pixels at
some locations within the window a greater weighting.
A modification of the median filter is the weighted median
(or centre weighted median) [5], in which the pixel derived
from the central location of the window is included in the
pixel list an increased number of times compared to the
other pixels. Consider the case of a 3 × 3 weighted median
filter with weighting W and window locations labelled x0 to
x8  such that the centre value is x4. For binary images the
weighted median filter may be expressed as,
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In the same way as the standard median filter was applied
to binary images through linear convolution and a threshold
function, the weighted median filter can also be
implemented in this way. The only modification required is
to set the window values to the appropriate weightings so in
the case above B(0,0) =W and B(k,l)=1 for all k≠0 and l ≠0.
The filter output can then be written as,

wmed Bw (I) = T (|Bw|+1)/2 [ I∗Bw]                 (9)

where Bw is the filter window including the weighted values
and | Bw| is the sum of all the values in the window.
So although the weighting, W, applied in the weighted
median filter refers to the number of times the centre pixel
is repeated, in the binary case, the same output may be
achieved by using, W, as a multiplicative weighting of the
centre pixel. Therefore in the binary case, not only does the
sorting operation simplify to a basic count, but also the
repetition operator is replaced by a multiplicative
weighting. For a weighted median 3x3 filter it can be shown
[6] that the W must be in the range 1≤ W ≤ 7.

OPTIMUM RANK ORDER FILTERS
Suppose a filter is defined based on the Hamming weight of
the vector, |x|. Then filters are of the form φ(x), and there
are only n+1 possible inputs for which it is required to
determine the filter value. These filters will be called
weight filters, and the optimal weight filter is given by
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The filter will be correct for at least 50% of the inputs. The
MAE of the optimum weight filter is summed over the
cases where it gives the incorrect output:

∑ ==>=<
x

xxx )|1(),|0(min)()(,0 yPyPPIIMAE optφ
  

(10)

The weight filter, φopt(x) , is sub optimal compared to the
optimal of all filters defined in the window n. This is
because it  has been constrained to consider only the weight
of the input vector, x. There is, therefore an increase in
error for each input x for which the output of the φopt(x)
differs from the overall optimum filter.
As  φopt and ψr depend only on the weight |x|, they can be
written as φopt(|x|) and ψr(|x|). Since φopt is optimal with
respect to weight-based filters, its MAE cannot exceed the
MAE of ψr, which means that rank-order filters are poorer
than optimal weight filters. Indeed, φopt = ψr if and only if
P(Y = 1| w) ≥0.5 for w ≥ r and P(Y = 1| w) < 0.5  for w < r.
Now suppose the ideal and observed images possess the
following weight-monotonic property:

P(y=1||x|=i) ≥ P(y=1||x|=j) for i>j               (11)

Then φopt =ψropt 
, where

ropt = min value of r for which P(y=1||x|=r) >0.5.

The weight-monotonic property states loosely that the more
black pixels in the observation window, the more likely it is
that the ideal pixel at the window centre is black. The
model is not unreasonable for ideal images in which the
micro-geometry is somewhat random and the noise is white
and symmetric. Simulation show that these assumptions
hold for restoration type problems where the noisy and
ideal images have similar pixel values, but they do not hold
for inverted or edge detected images. Rank order filters
would not be applicable for the latter type of images.
If ropt = (|B|+1)/2  then the optimum rank order filter is the
median, otherwise it is some other rank.
The MAE of the optimum filter is then given as,
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The difficulty in this general approach to filter design is in
obtaining a good estimate of the conditional and prior
probabilities P(y=1|x) and P(x) respectively for each value
of x. In restricting the class of functions to that
corresponding to rank order filters, a smaller set of
conditional and prior probabilities P(y=1||x|) and P(|x|)
must be estimated. This is carried out through the collection
of observations of a representative training sequence.

OPTIMUM WEIGHTED MEDIAN FILTER DESIGN
The design of the optimum weighted median filter within a
window B, reduces to the problem of determining the pixel
weighting, W, for which the MAE is a minimum. This

problem may be placed in the context of a difference filter,
D(I).
As the weighted median is a self dual operator, it treats
foreground and background pixels equally, i.e. if a black
pixel switches to white when a given number of its
neighbours are white, then a white pixel with the same
number of black neighbours must switch to black.
Therefore, only two quantities with the filter window
influence its output, xc,  the value of the pixel at the centre
of the window, and |xc'| the sum of the neighbouring pixels
which have the opposite value. The centre weighting can be
directly related to the number of neighbouring pixels, of
opposite value, |xc'| required to cause the centre pixel xc to
switch its value from 0 to 1 or vice versa.
For simplicity let d=D(I).  Then P(d=1||xc'|) is the
probability that xc will switch value when |xc'| of its
neighbours have the opposite value. Similarly P(d=0||xc'|)
is the probability that xc will remain unchanged under the
same conditions. The prior probability |xc'| is given by
P(|xc'|).
By the same arguments as the rank order filter and as a
result of the summation within the weighted median filter
the difference filter D(I) is increasing with |xc'|. Assuming
that the weight -monotonic property holds, then the
probability that a pixel will switch state increases
monotonically with the number of neighbours it has with
the opposite value.
The optimum differencing filter Dopt(I) is determined by
d'opt the minimum value of |xc'| for which P(d=1||xc'|) >
0.5.
Similarly the total MAE is given by
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The conditional and prior probabilities may be estimated
from observations of representative training images. Figure
2(a) shows an image containing very thin text. The
probability estimates (b) show that a value of d'opt =7 gives
the optimum weighted median. This means that the pixel at
the centre of the mask will switch state if 7 or 8 of its
neighbours have the opposite value and this corresponds to
a weight of W=5. In contrast applying the standard median
results in the image shown in Figure 2(c) and it destroys
most of the text. The result of applying the optimum
weighted filter is shown in Figure 2(d) and it can be seen
that most of the text is preserved. The filters with weights
on either side of the optimum,i.e. W=3 and 7 give very
poor results, which suggests that the selection of the
optimum weight is critical.
Figure 2(e) shows an overview of the algorithm used to
implement the optimum weighted median filter. It can be
seen that the sorting stage has been replaced by a  linear
convolution with mask B(0,0)=5 and B(k, l)=1 for all k≠0
or l≠0. This is followed by threshold operation at (W+9)/2=
7.



ERROR ESTIMATES
Clearly in practical situations the ideal image is not
available. Where the process is repeatable such as
transmission error it is possible to transmit a number of test
images to build the training set. In other cases it is
necessary to model the noise in some way. A vitally
important part of these methods lies in using the correct size
of training set. Where a training set is too small an
additional error known as the precision error is introduced.
This quantity is a random function as it depends on the
training set.
For a basic 3 x 3 filtering window, the 9 input variables
means that there are 229

 ≈10154 different logic functions
which may be implemented. For larger windows the
number of functions grows rapidly. The training set
required to estimate the conditional probabilities in order to
determine the optimum function out of all these
combinations may be impossibly large. In this work the
number of functions has been reduced to the set of
functions which implement rank order, morphological and
weighted median functions. The optimum parameters for
these filters have been obtained from a training set of a few
test images with negligible estimation error.  A full
discussion of the problems of estimation error in this type
work is given in [7].
CONCLUSIONS
Many researchers and engineers reject morphological and
other non linear image processing because of the need to
introduce additional hardware or software functions to their
system. This work has shown how a useful subset of non
linear operations may be implemented using linear image
processing tools to obtain median, rank, morphological and
weighted median filters. Analysis and examples have been
included to show the reader how to estimate the optimum
filter parameters for these various types of filter. The work
in this paper has been limited to binary image processing
but it is also possible to use a similar framework for the
implementation of greyscale functions. This will be the
subject of a future paper.
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t=5 Erosion
Error 80 pixels

t=4
Error 13 pixels

t=3 Five point
median
Error 0 pixels

t=2
Error 6 pixels

t=1 Dilation
Error 46 pixels

1(a) Noisy image, I                                                     1(b) Original Image, I0

Convolution by five
point window

1(c) Resulting Greyscale
Image thresholded at each
level

Figure 1
Convolution of noisy image with binary window then thresholded to give 5 output
images including the erosion (t=5), dilation(t=1) and median (t=3).

I H

B

H

|xc'| P(|xc'|) P(d=0,|xc'|) P(d=1| |xc'|) D(x)
0 0.45 1.00 0.00 0
1 0.22 1.00 0.00 0
2 0.09 1.00 0.00 0
3 0.07 0.99 0.01 0
4 0.05 0.97 0.03 0
5 0.04 0.91 0.09 0
6 0.05 0.89 0.11 0
7 0.01 0.22 0.78 1
8 0.02 0.01 0.99 1

(a) Original noisy image
(b) Probability estimates

(c) Standard median filter
(d) Weighted median filter W=5.

Figure 2
This image (a) containing very thin text is almost destroyed by the median filter(c), but the
weighted median filter (d) with W=5 (equivalent to |xc'|=7) preserves much of the detail, (e)
shows how the weighted median filter was implemented,

*
1 1 1
1 5 1
1 1 1

(e) The noisy image I is  linearly  convolved with  the window, B shown to produce the
greyscale image H, which is then thresholded at level 7 to give the weighted median filter
with W=5.

 Greylevel image, H Noisy image, I  Weighted median
Filtered image

Threshold
At level 7
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