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ABSTRACT

Astronomical microwave images carry information
about radiation from various sources, including cos-
mic microwave background radiation, galactic dust, syn-
chrotron, etc. Moreover, the observations are corrupted
with sensor noise, which is normally space varying. All
of these components carry important information about
the Universe and need to be recovered separately. In
this paper, we study the problem of component separa-
tion in astronomical images using a recently introduced
technique called independent factor analysis (IFA). We
briefly analyse the source distributions and suggest a
Gaussian mixture model. We then introduce IFA and
discuss how the developed source and noise models are
incorporated in the IFA algorithm. We present simu-
lation results obtained by IFA on realistic data, which
simulate the ones expected from the Planck Surveyor
Satellite mission, to be launched by the European Space
Agency.

1 INTRODUCTION

Astronomical microwave images carry important infor-
mation about the Universe. For example, the recovery of
cosmic microwave background (CMB) radiation would
help us in making the picture of the early Universe.
Unfortunately, astronomical images contain mixtures of
radiations from various sources such as CMB, galactic
dust, synchrotron, free-free emission, extra-galactic ra-
dio sources, and noise arising from the sensor. One needs
to isolate these sources and clean up the noise in order
to study and understand them.

One technique for source separation, namely indepen-
dent component analysis (ICA), has been explored for
the astronomical image separation problem in [2]. This
work showed that ICA has limited success in the pres-
ence of noise, and falls short of the needs of our problem,
where the detector noise is not negligible. Moreover,
ICA is a completely blind model estimation technique
while we have some crucial prior information to be ex-
ploited about the sources and the noise. In this paper,
we adopt a method that incorporates prior information
about the sources in a very generic way. This method is
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called independent factor analysis (IFA), and has been
introduced recently in [5], [1]. The novelty of the tech-
nique is in proposing a generic model for the source
densities, namely the Gaussian mixture model, and in
providing a neural network architecture which is spe-
cially convenient for learning through an expectation-
maximization algorithm. The noise is also taken into
account in the mixture generation model in a very natu-
ral way and hence IFA provides an important alternative
to ICA.

Despite this attractive appearance, the numerical
studies on IFA are limited only to a couple of simple
synthetic toy problems, and the potentials and the draw-
backs of the technique are not well understood. In this
paper, we study this technique in the context of simu-
lated but realistic astronomical data, and try to identify
its potentials, its weak and strong points.

2 SOURCE DISTRIBUTIONS

In this section we will look into the amplitude distribu-
tions of the most important components in astronomical
images, to see whether we can suggest a common sta-
tistical model for all of them. These maps simulate the
ones that are expected from the Planck mission, and are
of the same type of those used in our experiments.

2.1 CMB Radiation

The theory tells us that CMB is Gaussian distributed.
Figure 1 shows a typical CMB image generated synthet-
ically.

2.2 Galactic Dust

A map of galactic dust radiation is shown in Figure 2.a.
The related histogram is provided in Figure 2.b, solid
curve. It is clear from the histogram that the galactic
dust exhibits a non-Gaussian behaviour. The curve is
multimodal and unsymmetric. We suggest modelling it
with a mixture of Gaussian densities, given by
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A patch of CMB radiation

Figure 2: a) An image showing galactic dust intensity,
b)Histogram and the Gaussian mixture model fit for the
galactic dust intensity

We used an expectation-maximization (EM) algorithm
[3] for fitting a Gaussian mixture to the histogram. The
resulting density is shown in Figure 2.b, dashed curve.
We repeated our experiments on about 15 different im-
ages of the same size, and in all cases we have seen that
the Gaussian mixture model provides very good fits us-
ing less than five components.

2.3 Synchrotron

Figure 3.a shows a synchrotron map extrapolated from
408 MHz observations. The related histogram is given in

Figure 3: a) A synchrotron intensity map, b) Histogram
and the Gaussian mixture model fit of the synchrotron
intensity

Figure 3.b, solid curve. Again, we tried to fit the curve

by a Gaussian mixture using the EM algorithm. The
result obtained by fitting a Gaussian mixture of only
four components is given in Figure 3.b, dashed curve.
These observations were repeated for many other radia-
tion sources. We suggest the Gaussian mixture density
as an efficient generic model for the spatial images of
astronomical radiation sources.

2.4 Noise distribution

Generally, it is assumed that the noise is space-invariant
Gaussian. However, in satellite images the noise may
not be space-invariant, as can be seen in Figure 4. The
reason for this non-stationarity is that the satellite an-
tenna does not scan the sky uniformly.

Noise map, 100GHz

Figure 4: A typical noise map expected from Planck
data

3 INDEPENDENT FACTOR ANALYSIS

For the case considered here, we can restrict our atten-
tion to a linear mixture model, given by:

L
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where H is the mixing matrix, y; are the observations,
x; are the sources and n; are the noise samples which are
assumed to be Gaussian distributed and space-varying.
We would like to obtain H;; and z; from observations y;.
In the last decade, various efforts have been made for the
solution of this blind source separation (BSS) problem,
which arises in many practical applications. In particu-
lar, ICA aims at decomposing the observations into in-
dependent sources, and has been studied widely in the
literature. However, ICA considers a highly idealised
problem where the mixing is square (L = N), invert-
ible, instantaneous and noiseless. In many real situa-
tions, and specifically in the problem we are considering
here, the observations are noisy and the available sen-
sors are not as many as the sources to be separated. As
the noise level increases, the performance of ICA algo-
rithms deteriorate and the separation quality decreases
[1]. Efforts have been made to include noise into the



analysis: Hyvarinen suggested employing a special class
of noise-insensitive contrast functions [4]. However, we
still observed a deteriorating behaviour when the noise
level increases.

Towards removing these drawbacks, Moulines et al.
[5] suggested modelling the sources with mixtures of
Gaussians, and employed EM-based techniques to es-
timate the mixing matrix and the source distribution
parameters. Later, Attias named this formulation in-
dependent factor analysis (IFA) [1]. IFA is performed
in two steps: in the first one, the IF model is trained
to learn the mixing matrix, noise covariance and source
density parameters. The adaptation of a Gaussian mix-
ture model for the source densities makes the model an-
alytically tractable and yet flexible, and enables one to
use the EM algorithm for the estimation of the parame-
ters. In the second step the sources are estimated using
the posterior source densities obtained in the first step.

3.1 Source Model

Let us assume for each source a model in the form of a
mixture of Gaussians:
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Hence, assuming independence of the sources it is

p(x]0) = Hp z;]0;)

where wgq, ftq, Vq are matrices that contain amplitudes,
means and standard deviations of the Gaussian kernels.
q contains the indices that determine which component
in the mixture the observation comes from.
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3.2 Sensor Model

To generate sensor signals y, first pick a unit ¢; for each
source ¢ with probability p(q) = wq. The probability of
generating a particular source vector x given q is

p(x[q) = G(x — p1q, Vq) (5)

and the probability of generating a particular sensor vec-
tor y given a source vector x is

p(ylx) =G(y — Hx,A) (6)

The joint density of the sensor vector, the source vector
and the top hidden layer is given by

p(a,x,y|W) = p(q) p(x|q) p(y|x) (7)

where W is the vector of the parameters to be estimated:
W = (H,60,A). Then, the sensor vector probability is

py|W) = Z/dxp plylx) =Y p(a) p(yla) (8)
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3.3 Learning the model

Next step is to define an error function that measures
the distance between the sensor model density and the
measured density. The following Kullback-Leibler dis-
tance function has been chosen

0 P’(y)

J(W) = [ dyp’(y)log Do) —Eflog p(y[W)]-H,
(10)

where E is the averaging operator over the observed

data.

3.3.1 Ezpectation-Mazximization Algorithm
Then the learning algorithm is obtained [1] as a modified

EM algorithm:
Maximization step:
H = Ey<xly>|(E<xxTy>)"' (1)
A = Elyy']-Ely<x'ly>H']  (12)

where < - > denotes the expectation operator.
Expectation step:
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3.4 Source estimation

For the estimation of the sources Moulines et al. do
not suggest any scheme [5], while Attias [1] suggests
two schemes, namely, least squares and MAP estima-
tion. For our experiments, we used the least squares
estimation scheme:

xUS(y) =< xly >= [dxxplely, W) (20)

where p(x|y, W) = 3_, p(aly) p(x|q,y). Evaluating the
integral, we obtain:

=> p(aly)(Aqy +bg) (21)
q
where
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by = (HTATTH+ V)~ 'Vq g (23)



Figure 5: Source separation of CMB+galactic dust mixture. Top row: original CMB and galactic dust sources,
respectively. Second row: mixtures. Third row: source estimates.

4 SIMULATION RESULTS AND CONCLU-
SIONS

We ran various simulations on synthetic and realistic
data. Our results with synthetic data (two Gaussian
mixture sources and three mixtures embedded in Gaus-
sian noise) partly confirmed the results of [1]. When
the number of unknown variables is small (the mixture
model parameters are fixed and assumed known, while
the mixing matrix is unknown), we observed a fast con-
vergence to the optimal values. However, when the num-
ber of unknowns is increased (mixture model parameters
are assumed to be unknown), we observed a significant
degradation in the performance.

As for more realistic data, we formed mixtures of
CMB and synchrotron and of CMB and galactic dust,
from maps of the type shown in Section 2 and added %3
(of the CMB) space-varying noise. When the mixture
model parameters are fixed, we observed that for good
starting points the algorithms finds the optimal H, and
the sources are recovered successfully despite the pres-
ence of some noise, as shown in Figure 5. When the mix-
ture model parameters are also unknown, the algorithm
fails in convergence and gets stuck in a local minimum,
due to the complicated error-function surface.

For the continuation of this work we will consider op-
timization with simulated annealing as opposed to EM,
to ensure global convergence.
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