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ABSTRACT 

 
This paper is concerned with the problem of de-noising for non-
linear signals. Principal Component Analysis (PCA) cannot be 
applied to non-linear signals however it is known that using 
kernel functions, a non-linear signal can be transformed into a 
linear signal in a higher dimensional space. In that feature space, 
a linear algorithm can be applied to a non-linear problem. It is 
proposed that using the principal components extracted from this 
feature space, the signal can be de-noised in its input space. 
 

1.0 INTRODUCTION 
 
Principal Component Analysis (PCA) is a powerful technique 
for reducing the dimensionality of a dataset. PCA is an 
orthogonal basis transformation which when applied to a set of n 
correlated variables transforms them into a new set of d 
uncorrelated variables with d ≤ n [1]. Choosing a fewer number 
of variables than originally existed, it is possible to remove some 
of the noise that exists in a noisy signal. This occurs because 
each new variable represents a part of the variation of the signal. 
When PCA is applied to non-linear signals, it cannot adequately 
capture the structure of the signal. 
 
Scholkopf et al. have introduced a non-linear version of PCA 
using kernel functions [2]. The main idea behind this algorithm 
is to transform the non-linear input space into a high 
dimensional feature space where linear algorithms can be 
applied. The transformation of the signal is done using kernel 
functions. The kernel induced feature space has the advantage 
that up to infinite dimensions can be used efficiently. This is 
achieved using implicit mapping. The signal is not actually 
mapped into the feature space but instead an inner product is 
used. This technique has been successfully used in classification, 
image recognition and text categorization [3]. 
 
In this paper a Kernel-PCA (KPCA) algorithm is developed and 
applied to DQPSK modulated signals. The signals are passed 
through an AWGN channel, and KPCA is used to de-noise the 
signal. A comparison with linear PCA is also given.  
 
In Section 2, the Kernel-PCA algorithm is presented. In Section 
3, the effect of applying KPCA on noisy signals is demonstrated. 
Additionally, a comparison between linear PCA and KPCA is 
illustrated. Finally Section 4 concludes the paper. 
 

 
2.0 KERNEL PCA THEORY 

 
2.1 Kernel Induced Spaces 

 
The first step in kernel-induced space is to map the data into 
another space. Thus for an input space X, the new feature space, 
is F={ϕ(x): x ∈ X} where ϕ is the mapping process. A feature 
map can simplify the classification task as seen in figure 2.1. It 
is an example of feature mapping from a two-dimensional input 
space to a two dimensional feature space. Normally the 
dimensions of the feature space are higher than the input space. 
The data cannot be separated linearly in input space however it 
is linearly separable in feature space. 
 
 
 
 
                              φ 
 
            
 
Figure 2.1 From non-linear input space to linear feature space 

 

Although the approach of mapping the data into a feature space 
solves the non-linearity problem, it introduces two additional 
problems. The first is that the feature space is a high-
dimensional space, which results in high computational 
demands. The second is the generalization theory problem or 
curse of dimensionality, which is overfitting in high-dimensional 
spaces [4]. To solve the computational problems, kernel 
functions are used. A kernel is a function K, such that for all x, z 
∈ X, with φ being the mapping from X to the inner product 
feature space F: 
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The idea of kernels generalizes the standard inner product in the 
input space [2]. This inner product provides an example of a 
kernel by making the feature map the identity such as: 

                                                   (2)                               >=< zxzx .),(K
Assume for example the decision function for linear 
classifiers , where w and b are the bxf +>=< xw.)(



parameters that control the function. The weights w can be 
written as a linear combination of the Nx training points, 
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where αi are positive coefficients proportional to the number of 
times misclassification of xi has caused the weight to be updated, 
and yi is the classification [4]. Substituting equation 2 in 
equation 3, the decision function becomes  
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From equation 4, it is obvious that there is no need to know the 
underlying feature map to process the data, because the data 
exists only in the inner product (equation 2). The use of kernels 
makes it possible to map the data implicitly into a feature space, 
overcoming the computational problems [2]. Substituting all 
occurrences of dot products with a priori chosen kernel function 
transforms the data into the feature space. 

In order to ensure that the kernel will be efficient to transform 
the data it must have some properties. Mercer’s theorem [6] is 
used to provide the answer of when a function K (x, z) is a 
kernel. First of all it must be a symmetric function. Because of 
that there will be a matrix V such that K=VΛV`, where Λ is a 
diagonal matrix containing the eigenvalues λt of K, with 
corresponding eigenvectors vt the columns of V. Assume that an 
eigenvalue is negative. The norm of a point x is given by, 
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 The eigenvalues must therefore be non-negative because 
otherwise the norm of a point x in space will be negative, 
contradicting the geometry of that space [6]. So a function K is a 
kernel function if and only if the matrix  is 

positive semi-definite.  
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The most commonly used kernel functions [1] are: 

• Polynomials k(x,y)=(x.y)d 

• Radial Basis Functions k(x,y)=exp(-||x-y||2/2σ2) 

• Sigmoid Kernels k(x,y)=tanh(k(x.y)+Θ) 

or combinations of these. 

From equation 2 it is obvious that the resulting feature space will 
have a number of dimensions equal to the number of 
observations. Although this seems difficult to process, it is noted 
that the algorithm does not work in the full feature space but a 
small linear subspace of it [2]. This subspace is chosen without 
requiring the knowledge of the mapping into feature space, 
which simplifies the process. 

 

 

2.2 Kernel PCA Algorithm 

Assume a given set of M points xi, with i=1,…,M, xi ∈ RN. 
Initially, map the data into the feature space using one of the 
kernel functions.  

                                                                   (6) 
Xx →

→Φ FRN:

The size of the resulting square matrix will be equal to the 
number of the points of the dataset. The next step is to center the 
data in the feature space. Finally the eigenvalues have to be 
calculated. Using the covariance matrix in F, 
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find the eigenvalues λ, as specified in equation 5. Additionally, 
they must be arranged in descending order so that the first λ 
gives the highest variance. The eigenvectors of the data in 
feature space V∈ F (≠0) are found by satisfying, 

                                                                         (8) VV C=λ
V will be of the form [αi1,αi2,…,αiM]. Note here, that the kth 
corresponding vector has to be normalized by the eigenvalue, 
using 1=λk<Vk.Vk>, in order to obtain the optimum principal 
component extractor in the sense of the shortest weight vector. 
After the eigenvectors are obtained, the kernel principal 
components have to be extracted. This is done by projecting the 
points of the signal into each eigenvector as seen in equation 9. 
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The number of kernel principal components extracted is 
important due to the fact that if they are too few not all the 
structure of the data will be represented. On the other hand if a 
large number of kernel principal component is extracted then 
more noise will be encapsulated making the de-noising more 
difficult.  

Due to the fact that a non-linear map was used to move into the 
feature space it cannot be said that there is a one-to-one 
correspondence between the points of the feature space and the 
points of the input space. Therefore it cannot be said that each 
point in the span of the mapped input data is necessarily the 
image of some input pattern. Thus, to move the points from 
feature space into input space, a “pre-image” of these points is 
required. In some cases, an exact pre-image is not possible 
(Gaussian Kernels) so an approximate pre-image is computed as 
follows [7],  
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Using the iteration seen in equation 10, the points of the feature 
space are moved back into the input space. The result is to place 
each point to the center of the appropriate cluster and this allows 



de-noising to be accomplished. The amount of error depends on 
the initial values chosen for z.  In the cases studied it was not 
possible to pre-image correctly. Using equation 10 all the points 
were centered on a particular point near the initial value.  

In de-noising, the noisy points themselves can be used as initial 
values. Thus equation 10 can be re-written as equation 11, where 
each point is used as an initial value and is run through all the 
other points.  For a number of iterations N<M, the last iteration 
N moves the reconstructed point x’ to the center of its 
constellation: 
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Now, all the points are moved to the centers of the constellations 
achieving apart from the classification, the de-noising of the 
dataset as well. 

3.0 SIMULATIONS 

To generate a modulated signal a pseudorandom process was 
used as an input. 8100 points were fed to a DQPSK modulator, 
which was passed through an AWGN channel. Without noise, 
the data only exists in position [0 1], [1 0], [-1 0], and [0 –1] as 
seen in Figure 3.1(a). Additionally, in figure 3.1(b) the effect of 
noise on the signal is illustrated. The difficulty of this case is 
that some points have moved into the region of other 
constellation making it impossible to use the distance as a 
classification tool.  

 
Figure 3.1(a) Clean DQPSK   Figure 3.1 (b) Noisy DQPSK   
 

To map the dataset into the feature space a 
used, with variance 0.1. The first set of s
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Figure 3.2 Reconstruction at Es/No=5dB 

 
Figure 3.3 Reconstruction at Es/No=9dB 

In Figure 3.2 and 3.3, two cases of Es/No 5dB and 9dB 
respectively are demonstrated, along with the reconstruction 
error for each kernel PC. As the number of kernel PC’s used 
Es/No 5dB  
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imulations examined 
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increases the reconstruction error increases. For optimum 
reconstruction up to two kernel-PCs are required. In figure 3.2 it 
can be seen that with one kernel-PC all four constellations are 
obtained where using the second kernel-PC only three 
constellations appear. The third and fourth kernel-PC cannot 
center the points into their constellation. In figure 3.3 where 
noise level is Es/No=9dB, the second kernel-PC yields the best 
reconstruction error. In figure 3.4 a comparison of the 
reconstruction errors using different kernel-PCs is provided. The 
channel had an Es/No from 0dB to 20dB. It can be seen that 
choosing to reconstruct with the second kernel-PC offers the 
minimum error.  



Figure 3.5(a) Linear 
PCA on clean signal 

Figure 3.5(b) Linear 
PCA on noisy signal 

Figure 3.4 Comparison of error using different kernel principal 
components 

 
   

 

The reconstruction error can be affected by the variance of the 
Gaussian function used to map the signal into the feature space. 
In the previous experiments, the variance of the Gaussian kernel 
was set to 0.1. Table 1 shows the different reconstruction errors 
for the first and the second kernel-PC for σ = 0.05, 0.07, 0.1 and 
0.2 

Variance Kernel-PC 1 Kernel-PC 2 
0.05 1.65% 2.5% 
0.07 1.68% 1.9% 
0.1 2% 3% 
0.2 6% 10.75% 

Table 1 Reconstruction error over different variance at Es/No= 
8db 

If instead of kernel-PCA, linear PCA was used it is obvious that 
it would be impossible to capture the structure of the data as it is 
non-linear. Applying linear PCA in a noiseless DQPSK signal 
results in obtaining a line, which cuts through the middle of the 
data. Additionally, in the noisy signal, applying linear PCA 
results in all the reconstructed points to appear in the center of 
the noisy signal as illustrated in figure 3.5(a) and 3.5(b) 
respectively. 

4.0 CONCLUSIONS 

In this paper a non-linear PCA algorithm was presented for de-
noising communication signals. The drawback of the initial 
reconstruction process is that it cannot perform satisfactory 
when the points are not in order. In a communication signal the 

points appear randomly, therefore it was required to re-form the 
pre-image generation algorithm. The algorithm was tested to 
DQPSK modulated signals. The signal was passed through a 
range of noise levels from Es/No=0dB up to 20 dB. The fewer 
kernel principal components used, the smaller the classification 
error was. The reconstruction errors achieved using different 
kernel-PCs were given. Additionally, the performance of the 
algorithm varied with different variances for the kernel Gaussian 
function. 

Classification Error Using Kernel-PC
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In order to improve the reconstruction error, it is proposed to 
consider a more appropriate kernel function for the mapping 
process. Additionally, this could be achieved by devising a 
better iteration for the reconstruction.  

It is noted that kernel PCA performed better in a real life case 
than linear PCA. Kernel PCA can extract up to M number of 
principal components were M is the number of the training set. 
This means that the information for the structure of the data is 
broken into more pieces, allowing better de-noising. Finally, it is 
appropriate for non-linear signals as linear PCA fails to operate 
completely as it cannot capture the nonlinearity of the signal. 
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