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ABSTRACT

Most blind sources separation methods are based on
the non Gaussianity or the coloration of the sources
and only recently their non-stationarity. This work pro-
poses new procedures which exploit both the first and
last aspects. We adopt the quasi-maximum likelihood
approach which provided a set of estimating equations
involving the score functions, which are then estimated
by a projection method and through the idea blocking
or kernel smoothing. Efficient off-line and on-line algo-
rithms are developed. A simpler and less costly proce-
dure based on a simple contrast for sub Gaussian sources
is also considered. Some simulation experiments are
given illustrating the high performance of the method.

1 INTRODUCTION

In previous works [5], we have developed a blind source
separation procedure adapted to source signals with
time varying intensity. This procedure however ignores
the possible non Gaussianity of the source and relies only
on the diversity of the variation of their intensity for sep-
aration. Here we shall it to exploit both the non Gaus-
sianity and the non stationarity of the sources. This
should improve the performance of the method as we
use more relevant information. Further our procedure
would work both in the case of stationary but non Gaus-
sian and Gaussian but non stationary signals.

For simplicity, we shall restrict ourselves to the model
of instantaneous mixtures without noise:

X (1) = AS(1) (1)

where X(t) = [X1(¢) X (#)]T is the vector of
observations (at time t), A is an unknown K x K in-
vertible matrix and S(t) = [S1(t) Sk (t)]T is the
vector of sources and * denotes the transpose. The goal
is to reconstruct the sources Si(t) based only on the as-
sumption of their mutual independence. No particular
knowledge about their distributions is assumed and we
are mostly interested in the case when these distribu-
tions change in time.
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2 SEPARATION METHODS

2.1 The Quasi Maximum Likelihood Approach

This approach, introduced in Pham and Garat [6], as-
sumes first that the distributions of the sources are
known in order to write down the likelihood and de-
rive a system of estimating equations, then modify it to
obtain a practical and usable system (as the sources dis-
tributions are actually unknown). Thus, let p;; be the
density of S;(t), assumed known for the moment. As
we are not interested in exploiting the temporal depen-
dency of the source, we further assume that the S;(t)
for different ¢ are independent. This is only a working
assumption, made in order to write down the likelihood,
as it will be apparent later that the method still works
without this assumption. The negative of the log likeli-
hood function of the model (1) then writes

T K
-T {% 33 log pi(A'X)i(t) + log | det A\]

t=1 i=1

where (A~!'X); denotes the i-th component of A=1X
and T is the sample length. For clarity of notation, we
now write B (the separating matrix) in place of A~!
and regard it as a generic parameter and reserve the
notation A for the true mixing matrix. Equating to
zero the (relative) gradient of the log likelihood with
respect to B, we get a system of estimating equations:

T
=S Gl BX)IBX),() =0, 1<i#j<K (2)

T
%Zwit[(BX)i(ﬂ](BX)i(f) =1, 1<i<K (3)

where 1);; is the derivative of —logp;; (called the score
function of S;(t)). Equations (2) can be seen to be re-
lated to the independence of the sources, since they are
satisfied when the (BX);(¢) are independent (assuming,
as it is customary, that the data have zero mean). The
main point is that the unknown v;; may be replaced by
some guess, as these equations with are still satisfied as
soon as the (BX); are independent, while the equations



(3) may be dropped. This is the approach of Pham and
Garat [6]. But in their case ¥;; = ; and the form of
1; is relatively simple while we are concerned here with
the case where ;; varies with ¢t and we cannot real-
istically know how it varies, except that it should vary
slowly. Thus we need at least a crude estimate of ¥;;. To
this end, we adopt the technique of projection in Pham
and Garat [6], together with the idea of blocking and
kernel smoothing. We approximate the score function
YBx), 1) of (BX);(t) by projecting it onto a given linear
space, spanned by a basis {¢1,...,én}, says. Thus we
minimize E{¢)x), ) —¢; ¢[(BX);()]}? with respect to
c;, where ¢ = [¢; --- ¢n]T. By expanding the above
square and using integration by parts, one is led to mini-
mize E{c] ¢[(BX);(t)]}?> —2c]E¢/[(BX);(t)], " denoting
the derivative. The key point is that this expression no
longer involves the unknown ¢ x),(s) but only the ex-
pectation operator, which can be replaced by a time av-
erage in the stationary case. To handle non stationarity,
we resort to two ideas introduced in [5].

1. Blocking: We subdivide the time indexes {1,...,T}
into L consecutive blocks Ti,...T}, such that the
distribution of X(¢) may be regarded as the same
for all ¢ in each block. Then for any function ¢,
Ep[X;(t)] is estimated by

Bo[X (1) = ﬁ S eIX(t)] forteT, (4)
teT;

where #7; denotes the number elements in 7;.

2. Kernel smoothing: We estimate Ep[X;(t)] by

i ST k(T p[X (7))
Ep[X(t)] =
S WE=y

where k is a kernel function (with compact support
in general) and M is a window width parameter.

(5)

The kernel method is very similar to the blocking
method, but it is costlier and should be better, as the
estimate is a local average around the time point of in-
terest while the blocking method averages over blocks.

Using one of the above estimators, ¥(Bx), () is esti-

mated by 1/;(BX)7-,(t) = ¢]'¢ where ¢; is determined by

E{s[(BX),(t)]¢" [(BX)i(t)]}&; = E{¢/[(BX)i(1)]}. (6)
The separating matrix B, in turn, is determined by the
estimating equations (2) with 1 replaced by ¥ Bx), (¢)-

We will take ¢; to be the identity function to ensure
the optimality of the projection method [6]. Hence

E{¢mx), 1) [(BX)i(1)|(BX);(t)} =1 (7)
which proves to be useful later. As for ¢o, ..., ¢n we will
take them to be power functions, of the form ¢;(z) =
sign(x)|z|*, a; > 0. This choice ensures the invariance
of the estimating equations with respect to scale change,
in the sense that they are still satisfied when a solution
B is pre-multiplied by a diagonal matrix.

2.2 The Contrast Approach

A drawback of the use of estimating equations is that
they generally admit several distinct solutions (not
counting those differing only by permutation and scal-
ing. Thus there is a risk of obtaining a spurious solu-
tion (although by using the above projection method
and some clever algorithm, this might be avoided, see
[3]). Therefore it is of interest to consider an alternative
method which consists in minimizing a contrast func-
tion (see [1, 4] for a definition). A popular contrast
is based on the mutual information, which is closely re-
lated to the expected log likelihood [5] and hence can be
expected to yield efficient separation procedures. How-
ever, it is not practical in this context since it requires
estimating the density of (BX);(t) for each ¢ and ¢. In
[5], this difficulty is avoided by working with the Gaus-
sian mutual information instead, which amounts to ig-
noring the possible non Gaussianity of the sources. Our
approach here is to abandon the mutual information cri-
terion and to consider a simpler and easier to implement
contrast.

Pham [4] has laid down a general framework for con-
structing contrast functions. Let @) be a functional over
distributions of random variables, which is superadditive
of class II in the sense of [2], that is Q(X + ¢) = Q(X)
and Q(c¢X) = |c|Q(X) for any random variable X and

QX +Y) 2 Q*(X) +Q*(Y) (8)

for any pair of independent random variables X,Y.
Then it has been shown in [4] that in the stationary
case the criterion Zfil log Q[(BX);(t)] +logdet B is a
contrast function, which is discriminating (in the sense
of [1]) if the inequality (8) is strict unless X and Y are
both Gaussian. Note that the time ¢ index is irrelevant
in this case but it does matter in the non stationarity
case where it is easy to extend the above result to show
that it still holds provided that log Q[(BX);(t)] is re-
placed by T-1 S log Q[(BX);(1)].

Direct calculations show that the functional Q(X) =
(EX*)Y/* is superadditive of class IT over the set of zero
mean sub Gaussian random variables. (A zero mean
random variable X is said to be sub Gaussian if its
fourth cumulant EX4—3(EX?)? is non positive). There-
fore, if the sources are sub Gaussian, a very simple con-
trast function is

1
— log E[(BX), (¢ log det B 9
17 2 D s EI(BX), (0] + log e )
To implement this contrast, one only needs to replace
E[(BX);(t)] by its estimate. As before one can either use
the blocking method or the kernel smoothing method for
this purpose. Taking the gradient the resulting criterion,

one gets the system of estimating equations

1 ¢ E[BX)F(t)(BX); ()]
2 E[(BX

t=1

—0, 1<i#j<K
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It can be seen that, if the blocking method is used, the
above system is the same as in the quasi maximum likeli-
hood approach, with 'L[J(BX)i,(t) now being 1/E[(BX)%(t)]
times the cubic function. If the kernel method is used,
it is not exactly the same but is still very close. Thus we
end up with the same system of estimating equation as
before, but the functions @E(Bx)i(t) are now much sim-
pler and less costly to compute. The downside is that
this method is designed for sub Gaussian sources only.

3 ALGORITHMS

3.1 Off-Line Algorithm

The goal is to solve for (2) with ¥;; = ﬁ(Bx)i(t) =¢lg
as defined by (6). To this end we shall make use of the
quasi Newton algorithm. Starting at a current value
B, one makes a small change —HB to it such that the
estimating equations is satisfied up to the first order.
Direct calculation shows that the corresponding change
of the right hand side of (2) is, up to the first order,

T
o S (BX): ()] (HBX).(1) (BX), (1) +
Y1 [(BX); (1] (HBX); (1)}

In the quasi-Newton algorithm, the above expression
is further approximated, by regarding the (BX);(t) for
different ¢ as independent (which is justified if we are
close to the separating solution) and replacing the time
average by expectation and vice-versa. Note that we
haven’t take into account of the fact that the ; are
set to Q/A}(Bx)i which would change when B changes to
B — HB. But using the above kind of approximation
and the equations (6) one can show that the effect of
this change can be neglected. Finally, the elements h;;
of H are determined by the equations

[wij 1 ] [hij] Iy [@Bx)im[(BX>i<t>1<BX>j<t>

L wji | [ hij YBx),; 1) [(BX); (1) (BX);(t)
(10)
where
1= .
wiy = 7 3 B, o [(BX)(MEIBX2(0). (1)
t=1
Note that these equations do not determine h;;. They

can in fact be arbitrary as long as they are small, since
they essentially induce scale changes. Thus we take B —
HB as new value of B, where the H is the matrix with
zero diagonal and off diagonal elements h;;.

In the contrast approach, similar arguments lead to
the same equation (10) but now (11) simplifies to

X); ()]E[(BX)3 ()]
E[(BX)}(1)]

(12)

L'Mﬂ

It is important that the matrix in equation (10) be
positive definite. Indeed, the right hand side of this

equation can be viewed as an approximate gradient of
the negative of the log likelihood (in the quasi-maximum
likelihood approach) or of the estimated contrast (in the
contrast approach). Thus the positive definiteness of
this matrix means that the algorithm moves the point
B in a direction which decrease the criterion. Looking
at (10), this is equivalent to w;jw;; > 1. But from (6),
Eigx), ) [(BX)i(t)] = Ev{px), ) [(BX):(t)] which, by
(7) and the Schwartz inequality, is bounded below by
1/E[(BX)2(t)]. Thus by the same arguments as in [5],
wijwj; > 1 unless E[(BX)?(t)]/E[(BX)?(t)] is constant
in ¢ and B¢y o [(BX)i(1)] = 1/E[(BX)3(t) for all
t. In the contrast approach, since the random vari-
able (BX);(t) is sub Gaussian, one may expect that
3{B[(BX)?(1)]}? > E[(BX)4(t) (although this may not
always be true) which would again result in w;jw;; > 1.

3.2 On-line algorithm

The on-line analogue to the above algorithm is based on
an updating rule for the functions ﬁ(Bx)i(t). To simplify
the notation, we denote by S;(¢) the i-th components of
B(t)X(t), B(t) being the estimated separating matrix at
time t. In the quasi maximum likelihood approach, we
introduce the matrix G;(t) and the vector g;(¢) which
are updated as

Gi(t) = (1-p)G(t — 1)+ p¢[Si(t)J¢T[*§i(t)]
gi(t) = (1 —p)gi(t — 1) + pp'[S;(t)]

where p is a small learning step. We then compute
&i(t) = G (¢t )gl( ) and take ¢S (1) to be €; T(t)¢ and

obtain El/)s ® [ i(t)] on-line as &} (t)g;(t). In thfe Acon-
trast approach, one simply takes dj&(t) to be 1/ESH(t)
times the cubic function, ES’? (t) being updated similarly
to the G;(t) or g;(t):

ESHt) = (1 — p)ESHt — 1) + pSi(t).
One then takes E’l/J [ 3(1)] to be 3BS2(t) /BSA(t).

To compute the new value B(t + 1), we first update
the w;;, now depending on t, as

Wij(t) = )+ /\E'(/)S (t)[ i(t )]ESZ( )

where A is another learning step. It is important that
A be much less than p so that w;;(t) appears as a lo-

) [Si(£)]ES2(t) over a time period

(1 — /\)wij (t

cal average of Ez/;g
much longer than that used to calculate E’L/A)fs,

and ES?(t). As before, in the quasi maximum likeli-
hood approach, one has @;;(t)w;;(t) > 1. This is be-
cause, from the above equation for ¢;(¢) and the fact that
1(s) = s, Ews « )[ +(t)] is bounded below by 1/G; 11(t)
where G 11(t) denotes the upper left element of G;(t),
which is no other than ES2(t). This bound also gen-
erally holds in the contrast approach provided that the
sources are sub Gaussian.



Finally, B(t+1) = B(t)— AH(¢)B(¢) where the matrix
H(t) has off diagonal elements solution of the equations

Lo wji(t) | [ (D) Vg, ) [95(0)]5:(t)

(13)
The diagonal element of H may be set to zero. But this
could lead to a slow continuous drift in the scale of the
reconstructed sources. To avoid this, one may take, as
in [5], hii(t) = a[S2(t) — 1], a being a small number, in
order to drive gently to 1 the long term average variance
of each reconstructed source.

> U

3.3 Other on-line algorithms

As in [5], one may consider the stochastic gradient al-
gorithm. This amounts to setting [h;;(t) hji(¢)]" to
the right hand side of (13) and thus the w;;(t) are no
longer needed. But this algorithm is much slower than
the Newton like algorithm, while the gain in computa-
tional cost is small. A more important reduction of this
cost is to update directly €;(¢) by a stochastic gradient
technique as in [3]. Explicitly

&i(t) = &(t— 1)+ pI{¢/[Si(t)] — B[S O, i1 Si()]}

where T' is a given matrix designed to accelerate the
convergence. The difficulty is to find a good matrix I",
otherwise the convergence can be too slow.

4 Simulation

In a simulation study, we have generated 3 indepen-
dent sources by multiplying independent uniform ran-
dom variables in [—+/3,v/3] with the square root their
variance profiles (shown in figure 1). They are then
mixed to produce the observations.

Figure 1: Variance profiles of the sources

We first apply our off-line algorithm with three basis
power functions of exponent .5, 1 and 3, to the first
500 observations (which was divided into 3 blocs by the
algorithm). The evolution of the global matrix BA (9
elements) with the iteration step is shown in figure 2.
One can see that the algorithm converges in less than
15 steps and the final separating matrix is quite good.

L L
0 5 10 1t

Figure 2: Convergence of the off-line algorithm

Finally, figure 3 shows the results of the application
of the adaptative algorithm with the same basis func-
tion. The learning step are p = .03 and A\ = .01. Fig-
ure 3 shows the evolution of the 9 elements of the global
matrix BA in time. One can see that the algorithm
performs quite well.
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Figure 3: Convergence of the on-line algorithm
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