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ABSTRACT

This paper presents a method for selective sharpness enhancement
that can sharpen only degraded edges blurred by several causes
without increasing the visibility of nuisance factors such as random
noise. The method is based on the coupled nonlinear reaction-
diffusion time-evolution equipped with a second-order nonlinear
smoothing term, a reaction term and an overshooting term. The
quantitative performance evaluations demonstrate that the method
sharpens blurred edges selectively much better than the existing
sharpness enhancement methods such as the peaking method and
the Volterra filter method. Moreover, this paper applies the method
to the real problem of the breathing-distortion removal.

1. INTRODUCTION

As a classical method for image sharpness enhancement, the peaking
technique [1] and its adaptive version [2] have been popular and
used for practical applications such as the digital TV receiver’s
enhancement. And, recently another type of sharpness
enhancement using nonlinear filters such as a Volterra filter has been
proposed [3]. However, these existing methods have their own
limitations; they cannot work well for blurred image heavily
corrupted by random noise, and will produce the side effect that the
noise visibility are augmented to some extent.

This paper shows that a sharpening method based on the coupled
nonlinear reaction-diffusion time-evolution, a prototype of which
was first proposed by M. Proesmans et al. [4], has an ideal
capability to sharpen blurred edges without increasing the visibility
of random noise. In this paper, along the analogous lines to the
Proesmans's ones, we form a different scheme of the coupled
nonlinear reaction-diffusion time-evolution based on the thin-plate-
deflection second-order smoothness model in which the presented
scheme differs from the Proesman's scheme. The presented
nonlinear reaction-diffusion time-evolution is equipped with a
second-order nonlinear smoothing term, a reaction term and an
overshooting term. The coupled nonlinear reaction-diffusion
method utilizes information about local image contents, to control
the degree of the second-order smoothing and the magnitude of the
overshoot to be added. The actual discrete expression for the time-
evolution is defined as the iterative application of a local nonlinear
operation, and the proposed time-evolution has a desirable
property that computing a certain decision criterion will halt its
iteration almost at the ideal moment when it achieves the best
selective sharpness enhancement. The Proesmans's method does
not include such a decision scheme to halt its iteration. We conduct
quantitative performance evaluations using test images, and
demonstrate that the presented method sharpens blurred edges
selectively much better than the existing sharpness enhancement
methods.

Moreover, to apply the method to the real problem of restoration
of degraded image sequences, we introduce an adaptive control
scheme into the presented method. We apply our reinforced method
to the real problem to suppress the breathing distortion. The
breathing distortion is caused by the phenomena of irregular
temporal variations of focus, and we often experience in cinema.

2. NONLINEAR REACTION-DIFFUSION TIME-
EVOLUTION FOR SHARPNESS ENHANCEMENT

2.1 Thin-Plate-Deflection Second-Order Smoothness Model
The idea of the reaction-diffusion is initiated by minimizing the
functional:
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The functional is composed of the three terms. The second term
penalizes approximation errors of two auxiliary functions u, v that
approximate the first derivatives of the function f:
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The approximations are introduced to lower the order of the Euler
differential equations. The first term, the second-order smoothness
term, detects f's meaningless variations by computing the deflection
energy of a thin plate, whereas Proesmans employed the piecewise-
rigid-plane second-order smoothness model [4]. The third term, the
reaction term, penalizes f's deviations from the input g. Adding the
reaction term with the parameter o is suitable for image
enhancement.

The Euler equations do not have clear physical meanings, because
the coupled equations for the two auxiliary functions, u, v, have the
cross derivative terms. Rewriting the equations to a simpler form
that has the same solution of funder the condition of equation 2, we
will obtain the resultant coupled equations:
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The above equations have clear physical meanings; all the three
equations are categorized as a reaction-diffusion-type equation that
has a diffusion term and a reaction term. The first equation has an
additional term identical to the overshoot term of the peaking
method, and it will produce overshoots in the vicinity of step edges
while smoothing out meaningless random variations within a
homogeneous region. Controlling their smoothing/overshooting
behaviors, they would sharpen blurred edges without enhancing
nuisance factors such as random noise. To control the degree of the
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overshoots to be added, we introduce a shooting parameter s.
Moreover, to avoid over-smoothing due to the linear diffusion, we
introduce the concept of the nonlinear diffusion. Furthermore,
introducing the artificially time-evolution variable 7, we obtain the
partial differential equations for their time-evolution:

Lo aleriP A & (e v S(F 8)

"_”:Al{div[c(uuunm A @ 1}

or

o 1 .

& Lfanfely o A 6 1}
where the function ¢ means the nonlinear diffusiveness function and
in this paper is given by

(v)=1/{1+(v/x)} 5)

2.2 Piecewise-Rigid-Plane Second-Order Smoothness Model
M. Proesmans et al. previously presented another coupled
nonlinear reaction-diffusion scheme [4]. Their method is different in
that they adopt the piecewise-rigid-plane model, instead of the
thin-plate-deflection model, as the second-order smoothness model.
The piecewise-rigid-plane model measures the energy as follows:
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However, their derivation of the time-evolution equations from the
energy functional lacks consistency; their derived time-evolution
must be evaluated as a cross between the time-evolution based on
the thin-plate-deflection model and that based on the piecewise-
rigid-plane model.

Applying the analogous procedure to thin-plate-deflection
model, we obtain another type of the time-evolution.
Unfortunately, the derived time-evolution equations do not have so
clear physical meanings as equation 4.
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2.3 Discrete Form of the Time-Evolution
The actual discrete expression for equation 4 is defined as the
iterative application of local nonlinear operations, as follows:
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In this paper, as a decision scheme to halt its iteration, we employ
the following scheme:

if |0 =& <6,,  then stop the iteration.
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Our proposed time-evolution of equation 7 has a desirable
property that the above decision scheme will halt its iteration
almost at the ideal moment when it achieves the best selective
sharpness enhancement. In most cases, the time-evolution of
equation 7 will be stopped within /00 iterations, and will take less
than /5 seconds per image of 572 by 512 pixels on a PC with a single
1 GHz Pentium IV processor. The Proesmans's method does not
include such a decision scheme to halt its iteration, and their time-
evolution sometimes cannot be stopped.
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2.4 Performance Evaluation Using Test Images
We evaluate performance of our method using artificially blurred
test images. First we blur an original sharp image /(x,y,t) with the
Gaussian filter having the impulse response G(x,y ; (),
1 0 ' +yHO
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and then add random Gaussian noise n(x,y,t) to the blurred image
G*h(x,y,t); thus we generate an artificially blurred test image g(x,y,?).
The image f{(x,y,t) denotes the sharpness-enhanced image
reproduced from the blurred test image g(x,y,?).

For the performance evaluation we define the qualitative
measures as follows:
(1) SNR of the sharpened image: SNR is computed between the
original sharp image 4 and the sharpened image f. The decision
scheme of equation 9 can halt the iteration of our proposed time-
evolution of equation 7 almost at the moment when it attains its
maximum SNR.
(2) Blur-Removal Ratio Br & Noise-Removal Ratio Nr: The vectors,
b, n, s, denote Gaussian-blurs artificially added to the original image
h, random Gaussian noise components added to the Gaussian
blurred image G*h, and deviations of the artificially blurred test
image g from the sharpened image £, i.e. g — f, respectively. We define
the vectors by putting their respective values at all the pixels in a
column. Then, we define the blur-removal ratio Br and the noise-
removal ratio Nr as follows:

Br=(b.s)/Ipl" . Nr=(n.s)/In| (11
The positive value of Br/Nr means that the blur/noise removal is
successfully achieved. If blur/noise is perfectly removed, then the
value of Br/Nr will be 1.0; but the reverse is not necessarily true. On
the contrary, the negative value means that the blur/noise is
augmented far from being removed.
(3) Average Contrast C [5]: For each pixel, first we compute the
contrast Cm(x,y,t) for the sharpness-enhanced image f(x,y,t) as
follows:
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where A, (x.y.0) is the edge value computed using Sobel row and
column operators and Em(x,y,t) is the mean edge value computed in a

Cop(x 3,

s E (%, p,



3 by 3 neighborhood N(x,y,f) of the pixel located at pixel coordinates
(x,y,¢t). The value of the contrast C is highest at intensity
discontinuities that occur along edges. Then we average the contrast
C, (x.p,0) over the image f, thus estimating the average contrast Cm(t):
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First we set the blurring parameter { in equation 10 as /.0, and set
the sharpness enhancement parameters A, 0, K as 1.0, 1.0, 5.0,
respectively. Changing the shooting parameter s, we apply the
presented sharpness improvement method to the blurred test
image. Figure 1 shows the values of Ct/)’ Br, and Nr versus the
shooting parameter s. Figure 1 shows the results of our method
based on the thin-plate-deflection model of equation 7. Our method
achieves the satisfactory selective sharpness enhancement; only
blurred edges are sharpened without amplification of random noise.

Next, we set the sharpness enhancement parameters A, s, g, K as
1.0, 0.5, 1.0, 5.0, respectively. Changing the blurring parameter { in
equation 10, we apply the presented method to the artificially
blurred test image g. Figure 2 shows the average contrast C  of the
sharpened image f versus the blurring parameter ¢, and also shows
the average contrast C of the artificially blurred test image g and
the average contrast C, of the original sharp image A. Our method
based on the thin-plate-deflection model behaves almost ideally; if
the Gaussian blurring parameter  is less that 7.0, it will recover
image sharpness nearly to the equal level. The other methods do not
have such a property.

Figure 3 shows the blurred test image and the image sharpened by
the presented method and the images sharpened by the adaptive
peaking method [2] and the adaptive Volterra filter method [3].
From figure 3, we find that the presented method successfully
achieves selective sharpness enhancement, and gives the
subjectively best quality sharpened image.

3. SUPPRESSION OF BREATHING DISTORTIONS

We apply our coupled reaction-diffusion based method of equation
7 to the real problem to suppress the breathing distortions. The
breathing distortion is caused by the phenomena of irregular
temporal variations of focus. We often experience the breathing
distortion in cinema. The image sequence containing the breathing
distortion looks like a motion picture irregularly moving in and out
of focus. Sometimes, images are randomly blurred due to irregular
defocus. Figure 4 shows the average contrast C, of the sharpened
image f versus the average contrast C  of the blurred image g for
each input blurred image frame g of the real old film sequence
containing the breathing distortions. As shown in figure 4, if the
shooting parameter s is fixed, the average contrast C , of the
sharpened image sequence will fluctuate frame by frame and the
breathing distortions cannot be suppressed.

If an input image frame is heavily blurred, to sharpen it to the
prescribed level of the average contrast it will be desirable that the
shooting parameter s should be made large at the cost of some
augmentation of random noise visibility. To improve the efficiency
of suppression of the breathing distortions, we reinforce the
presented method with the adaptive scheme that controls the
shooting parameter s as a decreasing function of the average
contrast C © of each input blurred image frame g. We introduce an
adaptive scheme of changing the shooting parameter s as a stepwise
function of the average contrast Co of the input frame g. The
stepwise adaptive control is designed as follows: examining the
characteristics as shown in figure 4 for an input image sequence,
first we determine the target level of the average contrast C(/) of the
sharpened image frame £, and as the shooting parameter s for every

input frame we select the smallest value that can attain the target
average contrast. The resultant adaptive control scheme is
expressed as the swithchover-type logic as follows:

if C<Cy <Cy, then s=s,. (14)
We apply our adaptive method to real old film sequences
containing the breathing distortions. Figure 5 shows the average
contrast C , of each image frame f sharpened by our adaptive
scheme, along with the average contrast C(g) of the input frame g.
The results of experimental simulations demonstrate that our
adaptive method suppresses the breathing distortions very
efficiently and produces the uniformly focused image sequence.

4. CONCLUSIONS

The quantitative performance demonstrate that our method
sharpens blurred edges selectively much better than the existing
methods. Moreover, introducing the adaptive scheme, we reinforce
it and apply it to the suppression of the breathing distortions.
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Figure 1. Average contrast C, 9 of the sharpened image fand the blur-
removal ratio Br and the noise-removal ratio Nr versus the shooting
parameter s under the blurring parameter ({) = 1.0 and the parameter

setting of (A, 0, K) = (1.0, 1.0, 5.0).
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Figure 2. Average contrast C P of the sharpened image f'versus the
blurring parameter { under the parameter setting of (A, s, g, K) =

(1.0,0.5, 1.0, 5.0).



(a) Blurred test image of the blurring parameter ({) = 1.0
[ SNR=20.175[dB], C = 0.052]
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(b) Sharpened image by the thin-plate-deflection based method of

the parameter setting of (A, s, g, K) = (1.0, 0.5, 1.0, 5.0)
[ SNR=22.882[dB], C,,=0.112, Br=0.513,Nr=0.136 ]
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(c) Sharpened image by the adaptive peaking method [2]
[ SNR =21.416[dB], C,,= 0.097, Br = 0.310, Nr = -1.065 ]

(d) Sharpened image by the adaptive Volterra filter method [3]

[ SNR=21.320[dB], C = 0.070, Br=0.258, Nr =-0.724 ]
Figure 3. Blurred test image and sharpened images given by the
several selective sharpness enhancement methods.
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Figure 4. Average contrast C(/) of the sharpened image f'versus the
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Figure 5. Average contrast C(/) of each image frame f'sharpened by

our adaptive scheme for the real old film sequence containing the

breathing distortions.



