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ABSTRACT

We discuss descriptions of convex domains containing Schur
polynomials, built around a given Schur polynomial. We
show that the domain described by a positive realness
constraint always contains the domain characterized by
Rouché’s theorem. We also show how to handle computa-
tionally the positive realness condition, using semidefinite
programming, in the context of designing stable IIR filters.
Two recent methods of Lang [4] and Lu et al [6] for opti-
mizing IIR filters according to a least-squares criterion are
modified to incorporate the positive realness condition and
shown experimentally to give similar results.

1 INTRODUCTION

Several recent papers [4, 5, 6] propose solutions to handle one
of the significant difficulties in designing IIR filters, namely
guaranteeing the stability of the filters. The IIR filter

H(z) =
b(z)

a(z)
=

b0 + b1z
−1 + . . . + bmz−m

1 + a1z−1 + . . . + anz−n
, (1)

is stable when the denominator is a Schur polynomial, i.e.
has all zeros inside the unit circle; for shortness, we say that
a(z) is a Schur polynomial, although we actually think at
zna(z). In [5], the polynomial a(z) is expressed as a product
of degree two factors, for which stability is easily imposed;
the drawback is the highly nonlinear form of the denomina-
tor of (1) in the new parameters. In [6], a global positive
realness condition is approximated with linear constraints;
the fixed convex set thus obtained is a subset of the stability
domain, therefore some generality is lost. The most success-
ful approach appears to be the use of Rouché’s theorem in
[4], in the context of a Gauss-Newton iterative method; a
stability domain is built locally around the denominator at
the previous iteration.

Let us first describe formally the optimization problem to
which we confine our study. We assume that the IIR filter (1)
has fixed degrees of the numerator and denominator, so the
optimization parameters are the coefficients ai, i = 1 : n, and
bk, k = 0 : m; we denote a ∈ Rn, b ∈ Rm+1 the corresponding
vectors. We consider a least squares criterion in the complex
domain, i.e.

J(a, b) =

NX
k=1

wk |dk −H(ωk, a, b)|2 , (2)
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where the complex values dk, k = 1 : N , represent the desired
frequency response of the filter in the frequencies ωk, while
H(ωk, a, b) is the actual frequency response of H(z) from (1).
The numbers wk > 0 represent weights. Such a criterion
is very useful when phase properties of the IIR filter are
considered in the optimization, e.g. like when linear phase
is desired in the passband.

Two difficulties are encountered in the minimization of (2):
the non-convexity of the criterion and the non-convexity of
the stability domain of Schur polynomials a(z), for n > 2.
Moreover, we may require some robustness of stability: a
small perturbation of the coefficients of a(z) should leave the
filter stable. We deal here mainly with the stability issue, in
the context of iterative methods. That is, given a Schur
polynomial a(z) and a polynomial b(z) (from the previous
iteration), we want to find local ”steps” δa(z) and δb(z) such
that the criterion (2) is improved, i.e. J(a + δa, b + δb) <
J(a, b), and the polynomial ã(z) = a(z) + δa(z) is (robust)
Schur. The contributions of this paper are

• to describe a convex stability domain around a given
a(z), based on a positive realness condition which is
computationally tractable exactly;

• to show that this domain always contains the domain
described by the Rouché’s theorem and to compare
them with the one given by the real stability radius;

• to insert the new description of stability in the meth-
ods from [4] and [6] (the latter with modifications) and
compare the two resulting methods.

2 CONVEX STABILITY DOMAINS

Let us assume that a Schur polynomial a(z) is given. We
desire to characterize—in a computationally advantageous
way—a convex vicinity Da ⊂ Rn of a(z) (of the vector a ∈
Rn) containing only Schur polynomials. Formally, we express
ã ∈ Da as ã(z) = a(z) + δa(z), with δa(z) = δ1z

−1 + . . . +
δnz−n, i.e. ã0 = a0 = 1, so that only monic polynomials are
considered (without loss of generality). In this section we
present three stability domains and then compare them.

2.1 Stability radius

We express

D1
a = {ã = a + δa ∈ Rn | ‖δa‖ < ra}, (3)

where ra is the (real) stability radius of the polynomial a(z),
i.e. the minimum 2-norm of a perturbation polynomial that
added to a(z) makes the result non-Schur (other norms may
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be used as well). The set D1
a is a sphere in Rn and so is

obviously convex. The computation of the stability radius is
rather complex, as shown e.g. in [7]. On the contrary, after
computing ra, the implementation of the quadratic condi-
tion from (3) is immediate. Robustness may be added in a
meaningful way by requiring that ã(z) have a stability radius
greater than a fixed minimum value rmin. Accordingly, we
define D1

a in (3) with ‖δa‖ ≤ ra − rmin.

2.2 Rouché’s Theorem

Rouché’s Theorem states that if |f(z)| < |g(z)| on a closed
contour in the complex plane, inside which the functions f
and g are analytic, then the functions g and f + g have the
same number of zeros inside the contour. In our case, if
|δa(z)| < |a(z)| on the unit circle, then ã(z) and a(z) have
the same number of zeros inside the circle, i.e. ã(z) is Schur.
The set

D2
a = {ã = a + δa ∈ Rn | |δa(ejω)| < |a(ejω)|, ω ∈ [0, 2π]}

(4)
is convex, as an intersection of convex sets: for each ω, the
left term of the inequality from (4) is a positive definite
quadratic form in the variable δa. For implementation, we
can consider only a finite number of frequencies in (4), as
in [4] (although such an approximated set may contain also
non-Schur polynomials, semi-infinite programming or spe-
cial techniques can be used for working on it). Replacing
ejω with ρejω in (4), for a given 0 < ρ < 1, ensures robust
stability by forcing the roots of ã(z) to stay inside a circle of
radius ρ.

2.3 Positive realness

A transfer function G(z) is strictly positive real (SPR) if it is
stable and ReG(ejω) > 0, for any ω ∈ [0, 2π]. The following
simple result gives a sufficient condition of stability in terms
of positive realness (see [10] for the continuous time case).

Proposition 1 If the transfer function

G(z) =
ã(z)

a(z)
= 1 +

δa(z)

a(z)
(5)

is positive real, then all the convex combinations of ã(z) and
a(z), i.e. aλ(z) = λa(z) + (1 − λ)ã(z), λ ∈ [0, 1], are Schur
polynomials.

Proof. Any convex combination of two positive real trans-
fer functions is positive real. Both the numerator and the
denominator of a positive real transfer function are Schur
polynomials. In our case, the functions are 1 and G(z) and
the polynomial aλ(z) is the numerator of λ+(1−λ)G(z).

Prop. 1 allows us to build the following stability domain
”centered” in a(z):

D3
a = {ã = a + δa ∈ Rn | G(z) from (5) is SPR}. (6)

Proposition 2 The set D3
a is convex.

Proof. Any convex combination λE(z) + (1 − λ)F (z), with
E(z) = c(z)/a(z) and F (z) = d(z)/a(z), with c, d ∈ D3

a, is
positive real, has a(z) as denominator and its numerator is
λc(z)+(1−λ)d(z), which thus belongs to D3

a (and is a Schur
polynomial).

The set D3
a may be described by a linear matrix inequality

(LMI). Therefore, it is appropriate to modern convex opti-
mization tools like semidefinite programming.

Proposition 3 With a0 = 1, let us define

f = 2[

nX
k=0

a2
k . . .

n−X̀
k=0

akak+` . . . a0an ]T , (7)

and

F =

26666664
a1 a2 . . . an−1 an

a2 a3 . . . an 0
...

... 0 0

an 0 . . . 0 0
0 0 . . . 0 0

37777775+

26666664
a1 a2 . . . an

a0 a1 . . . an−1

0
. . .

. . .
...

0 0
. . . a1

0 0 . . . a0

37777775 . (8)

Then, the polynomial ã(z) = a(z) + δa(z) belongs to D3
a if

and only if there exists a positive definite matrix Q such that

v = f + Fδa, (9)

where v ∈ Rn+1, with v` = trA`Q; we denote A` the elemen-
tary Toeplitz matrix with all elements on the `’th diagonal
equal to 1 and zero elsewhere (note that A` is not symmet-
ric) and trX is the trace of the matrix X.

Proof. The condition that G(z) defined in (5) be positive
real is equivalent to requiring that (since a(z) is Schur)

G(z) + G(z−1) =
2a(z)a(z−1) + δa(z)a(z−1) + a(z)δa(z−1)

a(z)a(z−1)

=:
p(z)

a(z)a(z−1)
(10)

is real and positive on the unit circle. Since the denominator
of (10) is positive on the unit circle, it follows that the sym-
metric polynomial p(z) must be positive on the unit circle,
which is true if and only if there exists a positive definite
matrix Q such that pk = trAkQ, see [2, 1]. The relation (9)
results using the definition of p(z) from (10).

For obtaining robust stability, we can enforce the zeros
of ã(z) to lie in a circle of radius ρ < 1, denoted Cρ. We
suppose that the zeros of a(z) are in Cρ. Let us define aρ(z) =
a(ρz); then, the zeros of aρ(z) are in C1 (i.e. aρ(z) is Schur).
Denoting R = diag(ρ, ρ2, . . . , ρn), we have aρ = R−1a. We
denote similarly δρ

a(z) = δ(ρz) and ãρ(z) = ã(ρz) = aρ(z) +
δρ

a(z). By virtue of Prop. 1, if 1 + δρ
a(z)/aρ(z) is SPR, then

ãρ(z) is Schur, and thus the zeros of ã(z) are in Cρ.
The key point for implementation is that the dependence

between δρ
a and δa is linear. Instead of (9), we have

v = fρ + FρR−1δa, (11)

where fρ and Fρ are obtained by replacing a with aρ in (7)
and (8), respectively.

2.4 Comparisons

We are interested now in a comparison between the three
above sufficient stability conditions. Let us start with an
example. We take n = 2, a fixed a(z) and δa(z) = δ1z

−1 +
δ2z

−2. The stability domain D of degree-two polynomials is
a triangle in the parameter plane (ã1, ã2), as shown in figure
1. The three sets corresponding to the definitions (3), (4)
and (6) are drawn in figure 1 for a(z) = 1 and in figure 2 for
a(z) = 1−0.5z−1 +0.6z−2. The set D1

a given by the stability
radius is a circle whose radius is easy to compute (for n = 2
only). The set D3

a, given by the positive realness condition,

2



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Stability domains for n=2, a
1
=0, a

2
=0

δ
1

δ 2

Figure 1: Convex stability domains around a(z) = 1, for
n = 2: real stability radius (solid line), Rouché (dotted),
positive realness (dashed).
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Figure 2: Convex stability domains around a(z) = 1 −
0.5z−1 + 0.6z−2, for n = 2.

has an ellipse as border, completed with the borders of the
whole stability domain. We notice that in both examples
we have D2

a ⊂ D3
a, which is true in general, as shown below.

We also notice from figure 2 that D1
a contains points that

are not in D2
a or D3

a and conversely. Anyway, from these
examples and others not shown here, it appears that the
positive realness condition is the most permissive, i.e. the
set D3

a has the greatest area. The most general result we can
prove is the following.

Proposition 4 For any Schur polynomial a(z), we have
D2

a ⊂ D3
a.

Proof. Let us assume that |δa(ejω)| < |a(ejω)|, for any ω.
Since |a(ejω)| 6= 0, we may write����δa(ejω)

a(ejω)

���� < 1 ⇒
����Re

δa(ejω)

a(ejω)

���� < 1 ⇒ 1 + Re
δa(ejω)

a(ejω)
> 0

⇒ Re
ã(ejω)

a(ejω)
> 0,

i.e. ã(z)/a(z) is positive real.

3 OPTIMIZATION METHODS

For the optimization of the criterion (2), we insert the posi-
tive realness description of stability in two iterative methods,
obtaining standard convex optimization problems at each it-
eration.

3.1 Gauss-Newton method

The following method is used in [4]. Let us suppose that
we have a, b defining the IIR filter (1) and we seek a + δa,
b + δb improving (2). To this purpose, we use a first order
approximation of H(ω, a, b) and thus the criterion becomes

J(a+δa, b+δb) ≈
NX

k=1

wk|dk−H(ωk, a, b)−∇T H(ωk, a, b)·δ|2,

(12)
where δT = [δT

a δT
b ]. Simple computation leads to the

quadratic form

J(a + δa, b + δb) ≈ η + pT δ + δT Sδ, (13)

where S is a positive definite matrix, p a vector and η a
positive scalar, all known. We minimize the quadratic crite-
rion (13), taking care that a(z) + δa(z) is a (robust) Schur
polynomial. To this purpose we use the positive realness
description of a convex stability domain around a(z). The
resulting optimization problem is

min
δ

pT δ + δT Sδ (14)

s.t. 1 + δa(z)/a(z) is SPR

This problem may be written as a mixed semidefinite-
quadratic-linear program (SQLP) [3], in standard equality
form. Let S = LT L be the Cholesky decomposition of S and
denote y = Lδ +0.5L−T p; then, the criterion of (14) is equal
to ‖y‖2 (minus a negligible positive constant). Let ẽ ∈ Rn be
a constant vector such that δ̃ = δ + ẽ is elementwise positive
for any admissible δ (values of order 100-1000 are sufficient
for moderately large m, n). With all these notations and
taking (9) into account, we obtain the following equivalent
of (14):

min
δ̃,λ

λ (15)

s.t.

2664
...

trA`Q
...

3775 − [F 0]δ̃ = f − [F 0]ẽ

− Lδ̃ + y = 0.5L−T p− Lẽ

Z ≥ 0, ‖y‖ ≤ λ, δ̃ ≥ 0

We note that other equality constraints may be added
immediately to the problem, e.g. H(0) = 1, which translate
into linear equalities in δ.

The iterative process is initialized with a(z) = 1 and a
numerator b(z) designed with some fast method for FIR fil-
ters. In a stage of the process, after solving the SQLP prob-
lem (15)—which is an approximation of the non-convex op-
timization problem—we find a step length α which ensures
J(a + αδa, b + αδb) < J(a, b). This is done by a simple line
search, like the golden section (taking a constant α is not
always successful). The iterations are stopped when the im-
provement of the criterion is no more significant.

3.2 Relaxation method

In [6], the Steiglitz-McBride method is revived for optimiza-
tion of IIR filters. The idea is to write the criterion (2) in
the modified form

J(ã, b̃) =

NX
k=1

wk

|a(ωk)|2
���dkã(ωk)− b̃(ωk)

���2 , (16)
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where a is kept fixed at the value from the previous iteration,
while ã and b̃ are the optimization variables in the current
iteration. In [6], a global stability condition is put on ã(z)
using positive realness, i.e. ã ∈ D3

0. Naturally, here we con-
sider the stability domain D3

a from (6), ”centered” in a(z),
and the optimization variable is δa(z), with ã = a + δa. (A
similar approach using the Rouché condition is proposed in
the very recent paper [9], for the particular case of notch fil-
ters.) This way, the criterion (16) is quadratic and a problem
similar to (14) is obtained; its SQLP formulation is similar
to (15).

The iterative process is initialized with a(z) = 1. After
finding the optimal δa in the current iteration, we actually
take ã = a + αδa, where α is a slightly subunitary constant,
e.g. α = 0.99.

4 Experiments

We implemented the two methods using the SQLP package
SeDuMi [8]. Both methods have difficulties in finding the
global optimum due to the non-convexity of the criterion
(2). The experiments we have done seem to indicate that
Gauss-Newton obtains more often better values of the crite-
rion. However, the modified relaxation is faster than Gauss-
Newton, requiring usually 2-3 times less iterations (e.g. 6 vs.
15).

We give here only one example, taken from [4], where a
lowpass filter is designed, with passband ending at 0.4π and
stopband starting at 0.56π. The degrees of the numerator
and denominator are m = 15 and n = 4, respectively. The
weights in (2) are taken as 1 in the passband and 10 in the
stopband; we use N = 200 frequency points, specifically 100
in passband and 100 in the stopband. We seek a linear phase
filter and we take the desired response to be dk = e−10ωk in
the passband, i.e. the group delay is 10 (note that the value
12 was used in [4]).

We made 20 designs with each method, forcing the poles
of the filter to lie inside circles with radii ρ going from 0.8
to 0.99 with step 0.01. The two methods gave (practically)
the same result in 11 cases; the Gauss-Newton method was
better in 7 cases, while in 2 cases the modified relaxation
was better. We show in figure 3 the magnitude response of
three filters designed with the Gauss-Newton method, for
ρ ∈ {0.8, 0.9, 1}. The corresponding maximum magnitudes
of poles of the resulting optimum filters are 0.7998, 0.8994
and 0.9704, respectively. The deviation from 10 of the group
delay is 0.469, 0.562 and 0.196 respectively.

5 Conclusion

We show in this paper that the stability domain (6) based on
positive realness is more meaningful than the Rouché domain
(4). In iterative methods for designing IIR filters, it may al-
low larger steps, thus reducing the number of iterations. We
adapt two recent methods for optimizing IIR filters (from [4]
and [6]); each stage of the iterative optimization consists of
a semidefinite-quadratic-linear programming problem, where
the stability constraint (6) is enforced exactly. Future work
will be directed towards adapting other optimization tech-
niques to criteria having other form than (2) and towards a
thorough comparison of the methods.

Acknowledgement. The author is indebted to Prof.
Ezra Zeheb for comments on [10] and to Radu Ştefan for
discussions about the real stability radius.
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