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1Siemens ICM, Munich, Germany,

2Digital Signal Processing Group, Ruhr-Universität Bochum, Germany.
email: gennaro.evangelista@mch.siemens.de

ABSTRACT

The conversion of complex-valued digital signals from
a given sampling rate to a second, arbitrary sampling
rate, with both sampling rates derived from indepen-
dent clock generators, is investigated for the first time.
Different efficient systems are presented and compared
concerning the required computational burden.

1 Introduction

The need of sample rate conversion is omnipresent in
the world of digital signal processing: 1. Choosing the
lowest possible sampling rate in compliance with the
sampling theorem in order to minimise the overall com-
putational burden of a digital system 2. Independent
specification of sampling and data rates in communi-
cations systems for digital audio and image processing,
software radio and digital receivers, etc. In the latter
case, digital subsystems operated at asynchronous sam-
pling rates that are derived from independent clock gen-
erators have to be matched by an Arbitrary Sampling
Rate Converter (ASRC).
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Figure 1: Model of arbitrary sampling rate conversion

The model approach to ASRC is depicted in Fig. 1 for
real input and output signals, where fi = 1/Ti and fo

represent the input and output sampling rates, respec-
tively: The equidistantly sampled digital input signal

x(ti,k) = x(kTi) = xc(t)|t=kTi is conceptually interpo-
lated to yield an intermediate (fictive) time-continuous
signal for subsequent resampling: y(to,n) = xc(t)|t=to,n ,
where the output sampling rate fo may be slowly time-
varying.

In the past, ASRC of real-valued signals has thor-
oughly been studied [1-4,6]. It is the goal of this contri-
bution to apply those results to complex-valued signals
since, for instance, modern digital communications sys-
tems are commonly based on the processing of complex
signals.
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Figure 2: Spectrum of a general complex digital signal
x(kTi) for fi > B > fi

2 ; ω = 2πf

The spectrum of a general complex-valued digital sig-
nal x(kTi) = xR(kTi)+jxI(kTi) of bandwidth B and cen-
tre frequency fc is shown in Fig. 2, where underlining
is used to distinguish complex from real (time-domain)
signals. Reasonable oversampling (by a factor of less
than 2) is assumed.

In section 2 the most efficient implementation of
ASRC for real signals is recalled [1, 6]. Next, this ASRC
system is used to develop a variety of novel approaches
to ASRC of complex signals. Finally, the presented
methods are discussed and compared.

2 Efficient Implementation of Real ASRC

The general and highly flexible approach to ASRC of
real-valued signals (RASRC) is depicted in Fig. 3
[1, 4, 6]. Upsampling by L in conjunction with lowpass
filtering h(ν Ti

L ) realises integer (L-synchronous) sample
rate conversion (ISRC). The subsystem with impulse re-
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sponse g(t) and subsequent output sampling at fo rep-
resents the quasi-continuous approximation. Here, each
RASRC output sample y(to,n) is derived from a sub-
set of η contiguous values u(ν Ti

L ) taken from successive
blocks of L output samples of ISRC.
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Figure 3: General approach to real ASRC

The most efficient implementation of RASRC [1] de-
duced from Fig. 3 is shown in Fig. 4 with h(ν Ti

L ) as an
FIR filter. It applies polyphase (PP) decomposition for
ISRC [5] with low-rate branch filtering at fi:

hλ(νTi) = h([νL + λ]Ti
L ), λ = 0, . . . , L− 1, (1)

and the Farrow-structure (FS) [2] for quasi-continuous
(ζ -1)-order polynomial approximation. The choice of
the respective η output samples of ISRC is governed
by the actually prescribed sampling instant to,n of the
RASRC output signal. As a result, for each output sam-
ple y(to,n) only η out of L PP branch filters (1) of the
ISRC must be activated at a time.

Polyphase-Interpolator


)
(
o,
� n
�t
y

x
(
k
T
i
)


h

�

0
(
ν
� T
i
)

�

h
λ

� (
ν
� T
i
)


h
λ

�

+
η
� -1
(

�
ν
� T
i
)


u
(
ν
�
0
T
i
/


	
L




)


h
L
-1
(
ν
� T
i
)


c
0,0


c
0,
ζ
 -1


u
([
ν
�
0
+
η
� -1]
T
i
/


	
L
)
 c
η
� -1,0


c
η
� -1,
ζ
 -1


c
0,1
 ∆
t

∆




t


c
η
� -1,1


F
ARROW
-

Structure


Figure 4: Efficient realisation of RASRC; ν0 = b to,n

Ti/Lc,
∆t = to,n

Ti/L − ν0

3 ASRC of Complex Signals

The spectrum of the complex signal x(kTi) to be con-
verted is depicted in Fig. 2 for arbitrary fc. As a coarse
yet suitable measure of the computational burden the
multiplication rate M , the number of real-valued multi-
plications times the respective sampling rate, is adopted.
The cases fc ≈ {0, fi/2} are self-evidently implied in
most of the ASRC approaches to be presented.

3.1 Complex ASRC System
ASRC of a complex signal as defined by Fig. 2 calls for
complex parameters of both the PP-interpolator and,
potentially, the FS, as shown in Fig. 4. Note that, in
compliance with Figs. 3 and 4, all multiplications of the
PP-interpolator are carried out at fi, whereas the FS
completely operates at fo.

)
(
o,
�R
 n
�t
y
x
R

� (
k
T
i
� )


L
 h
R
(
ν
� T
i
� /

�
L
)


�

h

�

I
(

	
ν
� T
i
/


�
L
)


�

-h
I
(
ν
� T
i
/

�
L
)


h
R
(
ν
� T
i
� /

�
L
)


�
L


x
I
(
k
T
i
)
 )
(
o,
�I




n
�t
y


g
R
(
t
)

�

g
I
(
t

� )


-g
I
� (

	
t
� )


g
R
(

	
t
)


f
o


Figure 5: Complex ASRC with complex h(ν Ti
L ) and a)

complex g(t) (CASRC1 with dashed blocks), b) real g(t)
(CASRC2 without dashed blocks)

First the PP interpolator is considered. The relative
transition bandwidth of H(ejωTi/L) is evidenced from
Fig. 6: fi−B

Lfi
. As a result, the multiplication rate of

ISRC is given by: 4aLf2
i

fi−B
η
L , where a represents a constant

factor depending on the filter specifications [5] and η
the number of active PP branch filters (cf. Fig. 4).
A widespread approach to the design of complex FIR
filters applies modulation:

h(ν Ti
L ) = h(ν Ti

L )ej2πfcTiν/L. (2)
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Figure 6: Specification of h(ν Ti
L ) for CASRC1-3

Next, three options of quasi-continuous approxima-
tion are examined. The first straightforward approach
(CASRC1) calls for a complex g(t), as shown in Figs. 5
and 7, and thus, for a complex (modified) FS. In case
of great L, a real FS (CASRC2) requires roughly the
same order for g(t) (cf. Figs. 5 and 7). The third op-
tion (CASRC3), depicted in Fig. 8, shifts the signal
spectrum to zero centre frequency for g(t) filtering.

For CASRC1 the impulse response g(t) of the com-
plex FS is again derived by the frequency shifting ap-
proach according to (2), which yields complex coeffi-
cients cµ,ν , real time-varying sampling instants ∆t and
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Figure 7: Specification of complex g(t) (solid), real g(t)
(dashed)

an additional mixer ej2πfcTi∆t/L at the output of the
complex FS. Hence, for computation of each complex
output sample, the complex FS requires 4ηζ real multi-
plications for cµ,ν , 2(ζ−1) for ∆t and 4 for ej2πfcTi∆t/L.
A tentative approach (which still calls for verification)
subsequently applies the dependency of FIR expendi-
ture on the frequency response transition band [5] also to
quasi-continuous approximation. As a result, the overall
CASRC1-multiplication rate is given by

MCASRC1 = 4aη
1−B/fi

fi + 2b(2ηζ+ζ−1)
1−B/Lfi

fo + 4fo (3)

with a and b being suitable constant factors.
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Figure 8: CASRC3 with complex h(ν Ti
L ) and real g(t)

For CASRC2 with real FS, the relative width of the
CASRC1-transition band of G(jω) is reduced by the
amount of 2fc

Lfi
to (1 − B+2fc

Lfi
), as it can be deduced

from Fig. 7. Hence, the overall CASRC2-multiplication
rate is given by

MCASRC2 = 4aη
1−B/fi

fi + 2b(ηζ+ζ−1)
1−B/Lfi−2fc/Lfi

fo. (4)

Finally, the expenditure of the CASRC3-approach ac-
cording to Fig. 8 is easily obtained by considering that
i) the transition band of G(jω) is identical to that of
CASRC1, ii) the first mixer has to perform η complex
multiplications at fi (cf. Fig. 4), and iii) the output
mixer carries out just one complex multiplication at fo.
Hence, the CASRC3-multiplication rate is given by

MCASRC3 = 4aη
1−B/fi

fi + 4ηfi + 2b(ηζ+ζ−1)
1−B/Lfi

fo + 4fo. (5)

3.2 Real-Valued ASRC System
Subsequently, ASRC of complex signals according to
Fig. 2 is to be performed by a completely real-valued

ASRC system (RASRC). This is achieved by suitable
pre- and postprocessing.

3.2.1 Modulation Approach (MASRC)
Moving the inner frequency translation of CASRC3 di-
rectly to the system input leads to the modulation ap-
proach (MASRC), as it is depicted in Fig. 9 with ISRC
as an PP interpolator. Since CASRC3 and MASRC rely
on the same (merely frequency shifted) specification, the
overall multiplication rate is immediately obtained by
adapting (5) correspondingly:

MMASRC = 4fi + 2aη
1−B/fi

fi + 2b(2ηζ+ζ−1)
1−B/Lfi

fo + 4fo. (6)

The associated spectra and filter transfer functions are
easily deduced from Figs. 6 and 7.
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Figure 9: Modulation approach (MASRC)

3.2.2 Analytic Signal Processing Approach (AASRC)
The analytic signal processing approach (AASRC), de-
picted in Fig. 10, first transforms the complex input sig-
nal x(kti) into the associated analytic signal with twice
the sample rate by means of the filter P (ejωTi/2), as
shown in Fig. 11 a). This approach to preprocessing is
obviously restricted to fc > B

2 . RASRC is applied to
the real part of the analytic signal, x′(k Ti

2 ), to yield the
real output signal y′(nTo

2 ) according to the spectral rep-
resentation Fig. 11 b). Finally the real signal y′(nTo

2 )
is extended to a complex signal y(nTo) by the Hilbert

filter Q(ejωTo/2) decimating by two (cf. Fig. 11 c).
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Figure 10: Analytic signal processing approach

Considering that the RASRC is operating at 2fi and
2fo and that p(ν Ti

2 ) and q(ν To
2 ) are realised as PP inter-

polator and decimator, the AASRC-multiplication rate
is given by:

MAASRC = 4ap

1−B/fi
fi + 2aη

1−B/2fi−fc/fi
fi

+ 2b(ηζ+ζ−1)
1−B/2Lfi−fc/Lfi

fo + 4aqf2
o

2fc−B , (7)
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Figure 11: Specification of a) P (ejωTi/2), b) RASRC, c)
Q(ejωTo/2)

where the relative transition bandwidths of P (ejωTi/2),
Q(ejωTo/2), H(ejωTi/2L) and G(jω) can be deduced from
Fig. 11.

3.3 Comparison
The relative cost of the described approaches to ASRC
of complex signals is compared by means of the multipli-
cation rates (3)-(7). For the set of parameters fc

fi
= 0.45,

B
fi

= 0.8, L = 10, η = ζ = 2 and all constants
a ≈ b ≈ ap ≈ aq ≈ 1, the relative multiplication rates
M/fi are plotted in Fig. 12 against the sample rate
conversion ratio fo/fi.

For nearly all tested sets of parameters MASRC re-
quires the least compuation followed by CASRC2. In
case of great L and great fo/fi CASRC2 is slightly more
efficient than MASRC since i) MASRC needs additional
multiplications by e−j2πfcTiν and ej2πfcTon and ii) the
difference of the relative transition bandwidths of G(jω)
becomes negligible.

CASRC1/3 compare badly with the above optimal
approaches: CASRC1 because of the complex-valued
FS, CASRC3 because of the multipliers e−j2πfcTiν/L and
ej2πfcTon.

AASRC always requires the highest expenditure due
to pre- and postfiltering and the operation of RASRC
at twice the sampling rates, 2fi and 2fo, respectively.
Note that the increased passband deviation caused by
pre- and postfiltering has neither been considered nor
compensated by higher filter orders in this comparison.
However, AASRC is extremely sensitive to fc

fi
and B

fi
(cf.

Fig. 11). As a result for some system specifications and
by the application of half band filters [5] for pre- and
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Figure 12: Multiplication rates M/fi of CASRC1 (◦),
CASRC2 (∗), CASRC3 (+), MASRC (¤), AASRC (¦)

postfiltering the gap of the multiplication rates will be
considerably smaller.

4 Conclusion

Arbitrary sampling rate conversion of complex signals
has been investigated for the first time. With MASRC
and CASRC2 two efficient methods have been presented.
However, it depends on the set of parameters {L, η, ζ,
B
fi

, fc
fi
} which of these approaches outperforms the other.
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