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ABSTRACT

In this work, the analytical Fourier-Mellin transform
(AFMT) is used to derive two algorithms for, first, the
estimation of the orientation parameter between two ob-
jects with the same shape, and second, the detection
of all rotational symmetric axes in gray-level images.
These algorithms are based on the computation of the
Hausdorff distance between shapes when expressed in
the Fourier-Mellin domain. Experiments are conducted
on gray-level images, confirming the robustness of the
algorithms and the accuracy of the estimated parame-
ters.

1 INTRODUCTION

The Fourier-Mellin transform has been extensively stud-
ied for pattern description and recognition in the last
decades. A number of works to date were motivated
by the search for some sets of features invariant under
rotation and scale transformations [11]. Due to the cru-
cial numerical problem faced in estimating the standard
FMT, the analytical Fourier-Mellin transform (AFMT)
was proposed in [5] and three efficient approximations
were then presented [3]. In this work, the AFMT is
used to derive two algorithms for, first, the estimation
of the orientation parameter between two objects with
the same shape, and second, the detection of all rota-
tional symmetric axes in gray-level images.

From results on commutative harmonic analysis for
the group of similarities (as the direct product of the
rotation and scale groups), i.e. shift theorem and Par-
seval equality, we show that the shape of an object is
an equivalence class of similar objects up to a similarity
transformation. When the group of transformations is
restricted to the compact group of rotations, the natu-
ral distance in the shape space becomes the Hausdorff
one. This result extends the one obtained on closed con-
tours and Fourier coefficients [2] to gray-level objects
and AFMT.

This interesting result is first used to derive an algo-
rithm for the estimation of the orientation parameter
between two similar objects. The correspondance prob-
lem between images is solved simultaneously according
to the Hausdorff distance value. The approach proposed
is related to global image registration algorithms, such
as correlation and matching filters [7, 1], and needs nei-
ther invariant descriptors, nor matching primitives, but
works directly on gray-level objects.

Finally, by computing the Hausdorfl between an im-
age and itself in the AFMT domain, we were able to
derive another algorithm for the detection and localiza-
tion of all the rotational symmetry axes in gray-level
images. The method is similar to some extent to the
work proposed by D. Shen et al in [9], in the case of
reflectional symmetry and complex moments.

This paper is organized as follows. The AFMT and
some of its relevant properties are presented in section 2.
Section 3 presents the main result regarding the compu-
tation of the Hausdorff distance between shapes in the
AFMT domain. In section 4, we then derive an algo-
rithm for the detection of all rotational symmetries of
any gray-level image. Experimental result on gray-level
images are presented.

2 FORMULATION

Throughout this paper, we shall denote by Z the addi-
tive group of integers, R the additive group of the real
line, R} the multiplicative group of positive and non-
zero real numbers and S! the unit circle of the plane R2.
All these groups are locally compact and commutative.
The direct product G = R x S! forms a locally com-
pact and commutative group under the following law :
(a,0) 0 (p,v) = (ap,0 + ). G is formed by all planar
and positive similarities centered on the origin of axes
and is equivalent to the polar coordinate space.



2.1 The analytical FM transform

We denote by LP(G) the normed vector spaces of inte-
grable (p = 1) and square integrable (p = 2) real valued
functions defined on G: f € L?(G) &
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The Fourier-Mellin Transform (FMT) is defined for
functions in L!(G). However, in general, gray-scale im-
ages cannot be assimilated to such functions and it was
proposed to compute the FMT of f,(r,0) = 7 f(r,0)
with ¢ > 0 [5]. The FMT of f, is called the Analyti-
cal Fourier-Mellin Transform (AFMT) of f and can be
written in this way: V(k,v) € G,
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where G = Z xR is the dual group of G [4] and represents
the parameters space in the Fourier-Mellin domain. The
AFMT can be seen as the Laplace transform on the
planar similarity group. It gives a unique description
and images can be retrieved with the inverse AFMT [3].

2.2 Parseval equality

We denote by L2 (QA)7 the space of square integrable com-
plex valued functions defined on G: h € L?(G) <
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The Plancherel theorem can be extended to every lo-
cally compact and commutative group [8]. For f, in
LY(G) NL3(G), M;, € L*(G) and the Parseval equality
is given by :

1 follag) = My, o) - (4)

In what follows, we assume that a gray-level object is
represented by a function f, € L'(G) N L?(G) (original
description) or, in a strictly equivalent way, by its FMT
Mgy € L2(G) (dual Fourier-Mellin description).

2.3 Gray-level shape

An object retains its shape whatever its position in the
image. So, the notion of shape is directly connected to
a group of transformations. In the case of gray-level im-
ages and similarity transformations, shapes can be char-
acterized efficiently by the AFMT using an appropriate
shift theorem.

Let f2 denote the rotation and size change of an ob-
ject f! through angle 3 € S' and scale factor a € R,
ie. f2(r,0) = fl(ar,0 + B). Two such objects will be

termed similar objects. It is easy to show that their
AFMT are related according to: V(k,v) € G,

My 0) = =70 e My (ko). (5)

These relations can be seen as the shift theorem for the
planar and positive similarity group. Going through the
group of positive similarities, the shape F of an object f
could be defined as the set of all similar objects accord-
ing to G:

F— {(f(ar,é)—i—ﬂ)),(a,ﬂ) eR" xsl} (6)

and, using Eq. (4) and (5), a shape is also defined in a
strictly equivalent way in the Fourier-Mellin domain by:

F={(a 7 e* M; (k,v)),(a,B) e Rt xS'}. (7)

It can be shown that a shape is an equivalence class
through the action of G [6]. However such a class is not
compact since RY is not. When considering only the
group of rotations, shapes become compact sets and the
Hausdorff distance is the natural metric on the shape
space.

3 Hausdorff distance in the FM domain

If the set of transformations is restricted to the one pa-
rameter plane rotation group S', a shape is formed by
all similar objects up to a rotation. In the FM domain,
we get from Eq. (7), setting a =1 :

F— {(eikﬁ My, (k,0)) 4 e+ B € Sl} :

Shapes are now compact and bounded sets since there
exists a continuous bijection with S'. The shape space
becomes the quotient space L?(Z x R)/S! which is a
metric space with the Hausdorff distance [4, 6]. The
Hausdorff distance A between two shapes F and G is
given by:

A(F,G) =max (§ (F,G),é (G,F)),

where ds is the Euclidean distance derived from the L2-
norms. In the FM domain, we get:

5(F,G) = in ||’ k,v) — e'F? k
(F,G) = max min [|e™? My, (k,v) — ™My, (k0 ||,
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Using the change of variable ¢ = ¢— ¢, we get §(F,G) =
mingest Ey, g, (v) with :
Efaxga (w) =
+oo ) 9
Z |./\/lfu(k,v) — etk Mg, (k7v)| dv
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Figure 1: Plot of the Hausdorff distance (b) computed
from the two images in (a). The minimum value A =
23.61 is attained for ¢ = 35.02°.

In a similar way, we also get (G, F) =
mingest By, ¢ (¥) = mingest Ey, 4 (), and the Haus-
dorff distance is reduced to the following quantity :

A(F.G) = min By, 5, (V). ©)

This result ensures the uniqueness of parameters and
extends the one obtained on closed contours and Fourier
coefficients [2] to gray-level images and AFMT. It is the
basis for the rotational symmetry detection algorithm
presented in the next section.

For illustration purposes, figure 1 shows the Haus-
dorff distance computed from the two gray-level images
of a butterfly. The minimum value, obtained by an op-
timization method, is attained for ¥ = 35° which is pre-
cisely the orientation difference between the two images.
Note that A is not exactly zero due to the numerical ap-
proximations in estimating (9) and the anisotropy of the
Cartesian grid.

4 Application to rotational symmetry
estimation

From the result presented above, an algorithm is now
derived for the detection and estimation of rotational
symmetries in gray-level images. Experimental results
are conducted on the four test images in Fig. 2. Images
(a) and (b) show 9 and 3 rotation and reflection symme-
tries respectively. The image in (c) represents a special
case of an image with an ‘infinite number’ of both sym-
metry types. The last image (d) presents one reflection
and no rotation symmetry.

Following [10], a 2D image is called P rotationally
symmetric (P-RSI for short), if it is invariant under ro-
tation of 2w /P about the center of mass of the object

(©)

Figure 2: Four test images used for symmetry estimation
experiments. Image (b) contains 190 gray levels. Image
(d) comes from the Image Computing Group, City Uni-
versity of Hong Kong.

Figure 3: Magnitude of central Fourier-Mellin harmon-
ics of the RSIs (a), (b) and (c) in Fig. 2.

and P is the largest integer: V(r,0) € R* x S,

f(r,@):f(r,ﬂ—i—%d), l=0,...,P—1. (10)

P

The AFMT can be seen as the analytical Mellin trans-
form of the Fourier coefficients of an image. Since the
Fourier coefficients F (k) of a P-RSI f is zero for every k
not a multiple of P, the AFMT is zero except for k& mul-
tiple of P and v real. This is illustrated in Fig. 3 which
shows the magnitude of central Fourier-Mellin harmon-
ics of the three RSIs in Fig. 2. In the first two cases, the
AFMT is zero for k a multiple of 9 and 3 respectively,
which corresponds to the number of fold axes in the im-
ages. In the case of the disk, the FMT is zero except for
k = 0 and corresponds to the special case of an image
with an ‘infinite number’ of folds.

For the detection and estimation of folds in an RSI f,
we propose to compute E;_ ; () from (8), which can
be written as: Vi € S,

Ey, 1, (¥) =

oo o
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Figure 4: Plot of Ey, ¢ (¢) for the four images in Fig. 2.

It is easy to show that Ey_ is even and periodic with
period %’T. The orientation of the folds is given by angles
1; such that E;_ ; (¢;) = 0. The solution E;_ ; (0) =0
is always true since any image is rotationally symmetric
with respect to 0° rotation.

The detected axes for the shapes sketched in figure 2
are reported in figure 4. Angles are given from the x-
axis and clockwise. The top-left result shows nearly zero
values according to the fold axes of image 2(a). The
minima of the top-right result correspond to the rota-
tion symmetric axes (—120°, 0° and 120°). For the disk
image (bottom-left result), E should have been exactly
zero everywhere, which is not the case, due to approx-
imations. We only get exactly zero for angles that are
multiples of 90° since the Cartesian grid is isotropic to
these angles (every pixel finds an exact location on the
grid). Nevertheless, the curve is near zero compared
to other results. The last image (bottom-right) is not
rotationally symmetric and the only zero is located at

b =0.

5 Conclusion

The problem of estimating the rotation parameter be-
tween two gray-level objects has been formulated as the
computation of the Hausdorfl distance between shapes
when expressed in the Fourier-Mellin domain. This re-
sult ensures the uniqueness of parameters and extends
the result obtained in [2] for planar closed contours and
Fourier coefficients to gray-level images and AFMT. As
an application, the Hausdorff distance has then been
used in order to detect and localize all the rotational
symmetry axes in gray-level object. One advantage is
that we do not assume the image to be symmetric since

the localization of the minima can be used to deter-
mine whether the input image is symmetric or not. The
experimental results confirm the robustness of the al-
gorithms and the accuracy of the estimated parameters.
The extension of the algorithm to reflectional symmetry
appears to be rather straightforward.
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