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ABSTRACT 

A method is proposed for creating dictionaries of near-
perfect reconstruction wavelets. Choosing a wavelet from 
a wavelet dictionary is an attractive alternative to 
customizing a wavelet for a specific task. The method is 
based on a modified simulated annealing scheme that 
implements unconstrained minimization. The amount of 
vanishing moments for the decomposition wavelets was 
fixed before the iteration. The iteration strived to produce 
wavelets with good time localization. We used the method 
to create two wavelet dictionaries. The first set was 
comprised of 269 wavelets, each having two vanishing 
moments. The second set of 33 wavelets had three 
vanishing moments. 
 
INTRODUCTION 

Wavelets are a subclass of filter banks. It is common 
practice to design filter banks using optimization tools [1]. 
Simulated annealing has proved itself to be a powerful 
and versatile optimization method, which overcomes the 
problem of local minimums [2]. Sherlock and Monro [3] 
applied simulated annealing to optimize wavelets for 
image compression.  

A large variety of wavelets exist. Most wavelets or 
wavelet families are maximized to a certain characteristic 
or group of characteristics [4]. For instance, Daubechies 
wavelets have the most vanishing moments per filter tap 
[5].  

Many applications could utilize a dictionary of sub-
optimal wavelets. Signal classification problems could be 
solved by trying all of the wavelets in the dictionary and 
selecting the best performing wavelet. In signal analysis, 
the wavelets that efficiently decorrelate the energy of the 
signal may reveal the subcomponents of the signal. The 
best wavelet for automatic detection of tumors in medical 
images may be found from the dictionary. 

Like all two-channel filter banks, the wavelet 
decomposition scheme relies on four filters, two 
decomposition filters and two reconstruction filters. The 
high-pass filters are called the wavelets ψ and the low-
pass filters are called the scaling functions ϕ. The filters 
are paired such that the reconstruction scaling function ϕr 
can be calculated from the decomposition wavelet ψd and 
the decomposition scaling function ϕd can be calculated 
from the reconstruction wavelet ψr.  
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With the orthogonal wavelets, the reconstruction 
wavelet is a mirror image of the decomposition wavelet. 
In the biorthogonal case, the decomposition and 
reconstruction wavelets are unique. 

Vanishing moments differentiate wavelets from other 
two-channel filter banks. Vanishing moments describe a 
wavelet’s ability to ignore polynomials. Therefore, the 
energy of the signal that can be modeled by a certain 
order polynomial will reside in the low-pass channel and 
the residual energy will reside in the high-pass channel. 
Since high-pass filters have a zero mean, all wavelets 
have at least one vanishing moment. Vanishing moments 
are important in data compression, but they also give 
wavelet interesting analysis properties.  

The wavelet transformation translates a signal from the 
time domain to the wavelet domain. If an inverse 
transformation can completely restore the signal, the 
wavelet has perfect reconstruction. Few real world 
applications require perfect reconstruction. For instance, 
in lossy image compression the compression errors are 
many orders of magnitude larger than the reconstruction 
error of near perfect reconstruction filter banks. It is 
preferable to improve the filter performance at the 
expense of perfect reconstruction [6]. In signal analysis, 
the signal is rarely reconstructed. Nevertheless, near 
perfect reconstruction ensures that the transformation 
captures most of the information of the signal being 
analyzed. 

We present here two new sets of wavelets, which form 
two dictionaries of wavelets with diverse characteristics. 
A suitable wavelet, for a specific task, can be found by 
trying all of the wavelets in these dictionaries. This is 
easier and faster than customizing a wavelet for the task. 
We have constructed the dictionaries by combining 
several optimization tools. 

 
METHODS 

We created the wavelet dictionaries by iterating a series 
of possible waveforms. We sought wavelets that were 
well localized in the time domain. The iterated was 
performed in the frequency domain with a modified 
simulated annealing scheme.  



 

 

The reconstruction error and number of vanishing 
moments of the wavelets were predetermined. The 
reconstruction error limit was 10-8. In the first dictionary, 
the decomposition wavelets had two vanishing moments, 
m=2, and in the second dictionary the decomposition 
wavelets had three vanishing moments, m=3. The same 
error level of 10-8 was applied to the vanishing moments. 
Only one vanishing moment was required for the 
reconstruction wavelets.  
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Biorthogonal filter banks have two unique filters and 
two redundant filters. We iterated the two low-pass filters, 
but the method would have work equally well for other 
filter pairs. The complexity of the problem was reduced 
by performing the iteration in the frequency domain. The 
Fourier coefficients at zero and π were fixed.  
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Only the magnitude and angle of the complex 

coefficients between zero and π were iterated. For an 8-
tap filter, this relates to six degrees of freedom, three 
coefficient magnitudes and three coefficient angles. Since 
two 8-tap filters were iterated, this amounts to twelve 
degrees of freedom for the problem. Fixing the edge 
coefficients also simplified the cost function since the 
frequency response of the filter did not have to be 
checked. Since the frequency response of the high-pass 
filters at D.C. was zero, the wavelets always had at least 
one vanishing moment. 

The wide array of different wavelets was obtained by 
constraining the magnitude of the Fourier coefficients of 
the deconstruction low-pass filter. The lower and upper 
bounds for every coefficient was chosen systematically, 
hence all of the possible combinations were tried. The 
range of the bounds determined the amount of possible 
wavelets. The constraint was implemented in the cost 
function, which enabled the utilization of non-constrained 
optimization tools. 

The high-pass decomposition and reconstruction filters 
were calculated from the low-pass filters. Therefore, the 
aliasing error of the filter bank was inherently zero. The 
reconstruction error can be calculated from the sum of the 
convolution of the low-pass filters and the convolution of 
the high-pass filters [7]. The reconstruction error is the 
maximum deviation from the ideal results.  
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Since the high-pass filters are calculated from the low-
pass filters, the expression was simplified. 

( ) ( ) ( )∑
→=

−=
t

rd ttR
0

2
τ

τϕτϕ  

( )
( ) ,...6,4,2,2/0

2/2
=≠=

==
tTttR
TttR

 

A wavelet is well localized if its coefficients decay 
rapidly to zero. It is also desirable that the peak of the 
wavelet is near the center of the filter. A localization error 
was calculated by taking the square root of the weighted 
sum of the filter coefficients.   
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The same cost function was used for the simulated 
annealing search and for refining the solution. The value 
returned by the cost function was a combination of the 
maximum reconstruction error and the residual energy of 
the vanishing moments. In the simulated annealing search, 
the components were combined using the P2 (Euclidean 
or mean squares) norm. In the refining routine, the 
components were combined using the infinity (maximum 
component) norm.  

A localization error limit was passed to the cost 
function. If the localization error exceeded this limit, the 
cost function’s value grew rapidly. An energy constraint 
was also added to the decomposition filters. The sum of 
the filters energies (P2 norm of the filter’s coefficients) 
was constrained to between 1.5 and 2.5 . Otherwise, the 
iteration produced grossly mismatched filter pairs, which 
mathematically fulfilled the other constraints.  

The purpose of the modified simulated annealing search 
was to find the wavelet with the smallest localization 
error. The correct error limit was determined by using the 
bisection method in ten evaluations. The localization limit 
for the evaluations was the mid-point value between the 
last successful evaluation and the last failed evaluation. 
The localization error limit, for the first evaluation, was 
10. Occasionally, one evaluation would fail, but a later 
evaluation would produce a lower localization error. In 
these cases, the evaluation counter was reset to ten.  

The initial waveforms for the first evaluation were zero 
vectors. Unlike most simulated annealing schemes, our 
method did not require an approximate solution. 

Each evaluation utilized a semi-complete modified 
simulated annealing search, with a fifty step logarithmic 
annealing schedules. Each step added random values to 
the filter’s Fourier components and minimized the filters 
by applying Nelder-Mead’s unconstrained nonlinear 
minimization [8]. The starting temperature was 5.8 and 
the temperature reduction was the natural logarithm to the 
power of 7. The evaluation was prematurely terminated, if 
the target value of 10-8 was obtained. The evaluation was 
also terminated, if after ten steps the reconstruction and 
vanishing moment error was over of 10-5.  



 

 

After the ten bisection evaluations were completed, a 
final simulated annealing search was executed using the 
obtained localization error limit. This search was allowed 
to run to the end of the annealing schedule.  

If the localization error of the produced wavelet was less 
than 2.5, it was refined and added to the dictionary. The 
wavelets were refined using Nelder-Mead’s minimization 
[8]. The cost function was evaluated with the infinity 
norm. The iteration was stopped when the computational 
limit was reached. Using double precision floating points, 
this translates to the 16th decimal place. 

 
RESULTS 

For the first dictionary, the iteration found 269 wavelets 
out of the 585 evaluated waveforms. For the second 
dictionary, 33 wavelets out of 585 evaluated waveforms 
were found. The dictionaries comprised a wide variety of 
frequency responses as can be seen from Figure 1 and 
Figure 2. Some of the wavelets resemble the traditional 
symlets, coiflets and biorthogonal spline wavelets. 
However, there were also wavelets with radically 
different forms, such as presented in Figure 3.  

 

 
Figure 1. Frequency responses of the wavelets in the first 
dictionary.  

 

 
Figure 2. Frequency responses of the wavelets in the 
second dictionary.  

 

 
Figure 3. A sample wavelet from the second dictionary, 
shown in the time and frequency domain 

 
DISCUSSION 

Our aim was to produce two dictionaries of near-perfect 
reconstruction wavelets that are relatively well localized 
in the time domain. Since the problem is highly non-
linear, it is unlikely that the global minimum, for all of the 
wavelets, were found in the time granted for the iteration. 
Nevertheless, the dictionaries are an impressive collection 
of diverse wavelets. 

The first dictionary was created for decomposing EEG 
data. Repeated tasks are believed to produce waveforms 
with components, which have a constant time scale but 
which are poorly time-locked with varying amplitudes. 
Since the shape of theses components are yet unknown, 
we believe a blind search using the wavelet dictionary 
may reveal the time-frequency signatures of these elusive 
components.  

A possible application, for the second dictionary, is 
image compression. The wavelets were tested on the Lena 
image, which was compressed to a tenth of its original 
data size. A 3-level wavelet transformation was 
performed. The coefficients above a threshold were 
quantized and then packed using PKWARE’s PKZIP. The 
threshold value was adjusted to produce a file that was a 
tenth of the original image. We used different wavelets, 
from the dictionary, for every wavelet decomposition 
level. Hence, every wavelet combination was tried. Our 



 

 

wavelets slightly outperformed the 4th order symlet, 
which was the best traditional 8-tap wavelet for the task. 

 
CONCLUSION 

While traditional wavelets suffice for most tasks, 
customized wavelets offer more versatility. A wavelet 
dictionary is an attractive alternative to wavelet 
customization, which requires extensive knowledge of the 
problem and lengthy computation. Wavelet dictionaries 
also offer a unique analysis tool. The properties of a 
wavelet, which matches the specific task, may reveal 
information about the underlying process.   
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