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ABSTRACT

The asymptotic analysis of the Underdetermined Recursive
Least�Squares �URLS� algorithm is performed� In particu�
lar� the behaviour of the weight�error correlation matrix is
investigated and the misadjustment is calculated� For highly
correlated input signals the misadjustment is shown to be
inversely proportional to the minimum eigenvalue of the un�
derdetermined order autocorrelation matrix� Simulations are
included to justify the conclusions�

� INTRODUCTION

Adaptive �ltering is a prominent research and application
area in digital signal processing� It embodies a large number
of techniques which have their own merits and drawbacks
from di�erent perspectives� The NLMS and RLS algorithms
can be classi�ed as two extreme cases from a linear algebra
point of view� Both techniques employ inversions �inverse
of the sample autocorrelation matrix in the RLS algorithm�
and the inverse of the norm square of the input vector�
which play decisive role in the overall performance of the
algorithms� Speci�cally� it can be observed that the NLMS
algorithm solves only one equation with respect to the N un�
knowns� where N is the adaptive �lter length� In the sliding
window covariance formulation of the RLS algorithm� a con�
stant number of equations L which is larger than or equal to
the adaptive �lter size� is used to estimate N adaptive �lter
coe�cients� The other two types of the RLS formulations�
namely Exponential Windowed �EW� and Growing Mem�
ory Covariance �GMC� RLS algorithms solve an increasing
number of equations across time� Apart from the NLMS and
RLS algorithms� the last option� 	 � L � N � has previously
received little exposure 
	�� This particular case� namely the
URLS algorithm is investigated in this paper� Similar to the
NLMS and RLS algorithms� an autocorrelation matrix must
be propagated in time� the order of which is underdetermined
with respect to the �lter order� The URLS family algorithms
have an inherent whitening e�ect on the input signal which
may be considered as �proportional to the number of equa�
tions solved L to estimate the unknown system in which
L is also referred as the prediction order� Thus� the URLS
algorithm lends itself to applications in which one has a pri�
ori knowledge about the spectral characteristics of the input
signal and�or high additive noise is present� A representa�
tive example is the acoustical echo cancellation problem in
hands�free telephony� The absence of a handset permits the

microphone to pick up the loudspeaker signal� which is re�
transmitted to the far�end speaker and perceived as echo�
The length of an echo path may be in the order of 	�� to
���� samples depending on the environment� Noise can also
be captured by microphones particularly in a noisy environ�
ment or if the gain of the microphone is high� In noisy mea�
surements� the optimality of least�squares estimates is lost
and the convergence of the algorithm must be controlled via
a stepsize� which is exempli�ed by decreasing the stepsize
of the NLMS algorithm used in echo cancellation part of
the hands�free telephony equipment 
��� The properties of
speech signals suggest that a prediction order of 	��	� yields
su�cient decorrelation� Thus� using an RLS type algorithm
would be a waste of resources if the echo path is several hun�
dred taps long� Alternatively� the desirable properties of the
URLS algorithm provide an attractive solution�

� URLS ALGORITHM

A derivation of the URLS algorithm which utilizes the prin�
cipal of minimal disturbance 
�� can be found in 
��� The
URLS algorithm is de�ned as

WN�m�N�k �WN�m�N�k�� � ��Hm�m�N�kU
��

m�N�kX
H
m�N�k � �	�

where WN�m�N�k is the tap weight vector� Xm�N�k is the

N � m input signal matrix� � is the step�size� �Hm�m�N�k
�

�

dHm�k � WN�m�N�k��Xm�N�k and Um�N�k
�

� XH
m�N�kXm�N�k �

The complexity of this algorithm is O�mN� �O�m���

� MISADJUSTMENT OF THE URLS ALGO�

RITHM

The weight error vector recursion of the URLS algorithm is

vk � vk�� � � ��opt � vk��Xk�K
H
k ���

where vk
�

�Wk�Wopt and �opt is assumed to be white� inde�
pendent of the input and referred as the minimum attainable
error in the Wiener solution� Regrouping the terms in ���
yields

vk � vk�� �I � �Pk� � ��optK
H
k � ���

The weight error correlation matrix is

vHk vk � �I � �Pk� v
H
k��vk�� �I � �Pk�

�� �I � �Pk� v
H
k���optK

H
k � �Kk�

H
optvk�� �I � �Pk�

���Kk�
H
opt�optK

H
k � ���



When the simpli�cations are made we obtain

vHk vk � vHk��vk�� � �Pkv
H
k��vk�� � �vHk��vk��Pk

���Pkv
H
k��vk��Pk � ��Kk�

H
opt�optK

H
k

�� �I � �Pk� v
H
k���optK

H
k� �z �

M�

� �Kk�
H
optvk�� �I � �Pk�� �z �

M�

���

The contribution from the term ��E
�
Pkv

H
k��vk��Pk

�
is

smaller than those of the �rst three terms on the right hand
side of ��� when the step�size � is small� hence� it can be
neglected 
��� Also� as the number of iterations tends to
in�nity� vHk vk � vHk��vk�� and therefore

�
�
Pkv

H
k��vk���v

H
k��vk��Pk

�
���Kk�

H
opt�optK

H
k� �z �

N

�M��M��

���
which is a Lyapunov equation 
��� Under the assumption

that Pk is strictly stable� the solution Z
�

� vHk��vk�� can be
written as 
��

Z �

Z
�

t��

exp 
Pkt� f� �N �M� �M��g exp 
Pkt�dt ���

In fact� Pk is not strictly stable because some of its eigenval�
ues are zero which arises from the fact that Pk is a projection
matrix� Hence� an explicit form cannot be found without im�
posing further assumptions�
The matrices M� and M� include correlations of vk�� and

Xk� �opt and Xk computed as time averages� When the in�
dependence assumptions are invoked� i�e� Xk� �opt and vk��
are assumed to be independent random variables� for large
m and N � the contributions from M� and M� are approx�
imately zero if the signals are assumed to be ergodic� If
the expected values of both sides of ��� are evaluated� the
contributions fromM� andM� are identically zero due to in�
dependence assumptions� In this case� the assumption that
m and N must be large is not needed� We can also show
that E fvk��g � �� i�e� Wk � W� as k ���
Therefore� we can write the matrix Z in ��� as the solution

of the following equation

� 
PkZ � ZPk� � ��Kk�
H
opt�optK

H
k � ���

i�e� only the contribution from N is considered� The solution
is given as

Z �
�

�
Kk�

H
opt�optK

H
k � ���

which is valid for large m and N values� When the expected
values of both sides are evaluated

E fZg �
�

�
E
�
Kk�

H
opt�optK

H
k

�
� �	��

the asymptotical behaviour of the weight error correlation
matrix is obtained� which should be valid for any m and N �
The independence of �opt and the input leads to

E fZg �
�

�
��E

�
KkK

H
k

�
�		�

where �� is the minimum obtainable mean�square power�
The misadjustment M is de�ned as

M � lim
k��

E
n�
vHk Xk

	
�
o

��
� �	��

which can be rewritten as

M �
tr
�
�UNE fZg

�
��

�	��

by invoking the independence assumption 
��� where �UN is
the expected value of the N �th order autocorrelation matrix
of the input�
The general misadjustment expression in �	�� is not very

informative which motivates the development of an approx�
imate expression� Let us return to ���� Evaluation of ex�
pected values of both sides yields

� 
E fPkgE fZg�E fZgE fPkg� � ����E
�
KkK

H
k

�
�
�	��

where �� is the minimum obtainable mean�square power� We
have also imposed the fundamental independence assump�
tion� When Pk and Kk are written in terms of the input� we
have

E
�
XkU
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k XH
k

�
E fZg� E fZgE

�
XkU
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k XH
k

�
� ���E

�
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When N � m� the approximation E
�
XkU

��

k XH
k

�
�

E
�
Xk �E fUkg�

��XH
k

�
is valid 
��� E fUkg � N �Um is also

true� where �Um is the m�th order autocorrelation matrix of
the input� Thus� �	�� simpli�es to

E
�
Xk

�U��m XH
k

�
E fZg� E fZgE

�
Xk

�U��m XH
k

�
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�
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�
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The relationship in �	�� is a Lyapunov equation 
��� the solu�
tion of which gives the asymptotical behaviour of the weight
error correlation matrix Z as the number of iterations tends
to in�nity� Hence�
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H
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where �Um � Qm�mQ
H
m so that the autocorrelation matrix

�Um is decomposed into its eigenvalues �m and eigenvectors
Qm� The only di�erence between the matrices in the ex�
pected value operations is that we have ���m on the left hand
side and ���m on the right hand side� If they were approxi�
mated as scalar multiples of each other� we would have

AE fZg� E fZgA � �A� �	��

where � is a scalar and A is an approximate matrix obtained
from E

�
XkQm�

��

m QH
mX

H
k

�
and E

�
XkQm�

��

m QH
mX

H
k

�
�

The solution of �	�� is given as Z � �����I� Hence� if
E
�
XkQm�

��

m QH
mX

H
k

�
is approximated as a scalar multi�

ple of E
�
XkQm�

��

m QH
mX

H
k

�
or vice versa� we can obtain a

tractable solution� i�e� we have to minimize

E �
XkQm�

��

m QH
mX

H
k

�
� cE

�
XkQm�

��

m QH
mX

H
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�

�	��
with respect to the scalar c� �	�� is equivalent to

Approximation I� Minimize


���m � c���m




�
� ����



Similar to the approach above� the other alternative is

Approximation II� Minimize


���m � c���m




�
� ��	�

Let 	 and �	 be the column vectors which consist of the in�
verse eigenvalues and their squares respectively� Thus� the
solutions of the approximation I in ���� and the approxima�
tion II in ��	� are given as

c �
�	H	
�	H�	

� ���a�

e �

�Pm

i��
	��i

� �Pm

i��
	��i

�
�

�Pm

i��
	��i

��Pm

i��
	��i

���b�

and

c �
	H�	

	H	
� ���a�

e �

�Pm

i��
	��i

� �Pm

i��
	��i

�
�

�Pm

i��
	��i

�
�Pm

i��
	��i

���b�

respectively� where the associated approximation errors e are
also shown� Hence� by comparing the denominators of the
approximation errors� we can conclude that the approxima�
tion I is better if

Pm

i��
	��i 


Pm

i��
	��i is satis�ed� This

condition is true for high�eigenvalue�spread autocorrelation
matrices� Thus� we can safely assume that for highly cor�
related input� the approximation I yields better results with

c �
��H�
��H ��

� We have also illustrated this fact in Figure 	 where
a representative example of a highly correlated input is cho�
sen� The inverse eigenvalues of a ��th order autocorrelation
matrix are ���� ���� 	��� �� ���� In Figure 	�a� the axes are
scaled so that a comparison can be made with Figure 	�b��
Figure 	�c� is essentially same as Figure 	�a�� Figures 	�b�
and 	�c� correspond to approximations in ��	� and ���� re�
spectively� The sums of the lengths of the vertical lines from
the inverse eigenvalues to the line or parabola represent the
modelling errors� Clearly� the �tting of a quadratic to the
eigenvalues results in better approximation� c�f� Figure 	�a�
or 	�c��

Thus� by taking the approximation I in ���� into account�
�	�� becomes

c
�
E
�
XkQ�

��QHXH
k

�
E fZg

�E fZgE
�
XkQ�

��QHXH
k

��
� ���N��E
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��QHXH
k
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the solution of which is given as� analogous to �	���

E fZg � E
�
vHk��vk��

�
�
���N��

�c
I� ����

More explicitly� we have

E
�
vHk��vk��

�
�
���N��

Pm

i��
	��i

�
Pm

i��
	��i

I� ����

which can be further approximated if the smallest eigenvalue
is dominant� so that

E
�
vHk��vk��

�
�
���N��	��min

�
I� ����
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Hence� the weight error correlation matrix is approximately
diagonal in the steady state� The misadjustment from �	��
is

M�
	

��
tr

�
�UN

���

�N	min
I

�
� ����

After some algebra� we can obtain

M�
��u

�	min
����

where �u is the diagonal element of the autocorrelation ma�
trix� i�e� the power of the input signal�
It is observed that the misadjustment is inversely propor�

tional to the minimum eigenvalue of the m�th order auto�
correlation matrix which leads to the conclusion that the
URLS algorithm produces higher misadjustment than the
NLMS algorithm for the same step�size and adaptive �lter
length with highly correlated inputs� If the input signal is
white� the URLS algorithms of all orders are equivalent to
the NLMS algorithm�

� SIMULATIONS

The above conclusions are experimentally veri�ed by the fol�
lowing experiment� The pole locations of the autoregres�
sive input are

�
���� ����� ���j ����� ���j

�
in which

there are a couple of poles very close to the unit circle� There�
fore� the autocorrelation matrix has high eigenvalue spread�
The identi�cation experiment is performed by the NLMS al�
gorithm� and the URLS algorithms with m � �� � � � � �� The
input signal has unity power which gives �u � 	� and 	min � 	
for the NLMS algorithm since the eigenvalue of the �rst or�
der autocorrelation matrix is equal to the input signal power�
The adaptive �lter length is chosen as �� and the noise power
as 	� The stepsize is set to ���	 to reduce the e�ects of the
neglected terms in the analysis� The experimental misadjust�
ment is calculated as the mean of the last 	����� samples of
the resulting Monte Carlo simulation of �� runs and �������
samples� The theoretical misadjustment is calculated from
����� The results are presented in Table 	�

Misadjustment M

	min Experimental Theoretical

NLMS� m � 	 	������� �������� ��������

URLS� m � � ��	����� �������� ������	�

URLS� m � � ��	����� ����	��� ��������

URLS� m � � ��	����� �������� ��������

URLS� m � � �������� ����	��� �������	

Table �� The misadjustments for various order URLS

algorithms with N � ��	 �� � �	 � � 
�
�	 �u � ��

The experimental results also show the trend of increase
in the misadjustment as the order of the URLS algorithm is
increased� The discrepancies between theoretical and exper�
imental results can be ascribed mostly to the fact that the
adaptive �lter length may not be enough to approximate the
true autocorrelation matrix�
The above theoretical result about the NLMS algorithm

is in agreement with the analysis in 
��� More detailed tech�
niques about the NLMS algorithm can be found in 
�� 	���

Another promising way to analyze the URLS algorithm
would be to assume the input signal is a sinusoid buried in
wide�band noise so that the eigenvalue spread is high and
the sinusoid leads to tractable expressions when projection
matrices are involved� In fact� the analysis of the �ltered�X
algorithm in 
		� takes the above assumption as the starting
point�

� CONCLUSIONS

The asymptotic convergence properties of the URLS algo�
rithm are investigated� The weight error correlation matrix
is shown to be diagonal at the steady�state� Two alternatives
are examined one of which leads to an accurate misadjust�
ment expression for highly correlated input signals� The the�
oretical �ndings are veri�ed in comprehensive experiments�
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