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ABSTRACT

This paper deals with the problem of designing an N-
band maximally-decimated analysis filter bank given K
of its filters, so that perfect reconstruction with FIR syn-
thesis filters is possible. An algorithm for computing the
N — K unknown analysis filters and the synthesis filters
is given and the solution set is completely parametrized.
The parametrization is exploited in optimizing the fre-
quency responses of the resulting filters and to derive
also a simple parametrization for the paraunitary case.
The linear-phase case is also discussed with emphasis
on the 2-band filter banks. An example is provided to
illustrate the theory.

1 INTRODUCTION

Multirate filter banks find extensive applications in
fields like subband coding, transmultiplexer design,
design of wavelet bases, etc. [1]. FIR perfect-
reconstruction (PR) filter banks (FB’s) (i.e., FB’s with
FIR filters in both the analysis and the synthesis stage)
are particularly useful for several reasons, including the
possibility of imposing stability and linear phase with-
out sacrificing causality. The problem of determining
the analysis filters, given one of them, so that FIR PR is
possible, has been addressed in the literature in the con-
text of wavelet design (e.g., [2, 3]) and to facilitate the
design and realization of specific classes of PRFB’s (e.g.,
[4]). In [2] the above problem for the case of 2-channel
FB’s was considered and it was shown to have an anal-
ogy with the solution of a polynomial Bezout equation
of the form Hy(z)H1(—z2) — Ho(—2)H1(z) = 9,—(2141)
The Euclidean algorithm has thus appeared to be a pos-
sible approach to solving for a particular complementary
filter Hl(z), and the solutions were parametrized as

Hy(z) :z_Zkﬁl(z)—i—E(zz)Ho(z), (1)

where k is any nonnegative integer and F(z) ranges over
all polynomials.

This paper deals with the more general version of
this problem, where, in general, 1 < K < N — 1 fil-
ters of an N-band maximally-decimated FIR FB are

given. It is shown that particular solutions for the un-
known filters can be computed via a Smith decompo-
sition of the known part of the analysis polyphase ma-
trix, thus generalizing the approach of [2] to the multi-
band case. Through this procedure, the synthesis filters
are also automatically determined. We provide a com-
plete parametrization of the set of the so-called com-
plementary filters, which in turn yields a characteriza-
tion of the set of synthesis FB’s. Having a complete
parametrization of the complementary filters at our dis-
posal allows us to develop optimization procedures for
their frequency response characteristics, without worry-
ing about preserving PR.

Linear-phase (LP) FB’s are highly desired in several
applications, with that of image subband coding being
the most well-known. The above problem, referred to
hereafter as the (N, K)-problem, is also treated in this
paper for the case of LP PRFB’s. Since the Euclidean
algorithm (viz., Smith reduction) does not preserve the
LP property, the parametrization result previously de-
rived is invoked to enforce LP for the complementary
filters. The problem is greatly simplified in the special
case of N = 2, therefore it is discussed in detail. A de-
sign example for a 2-band LP PRFB demonstrates the
advantages of providing the designer the possibility of
fixing one of the filters a-priori.

2 THE (N, K)-PROBLEM

In a PR analysis/synthesis system (ASS), the anal-
ysis and synthesis polyphase matrices are related as
GZ(z)Hp(z) = I. Thus, if we require that the synthesis
filters be FIR, we must ensure that the matrix H ,(2)
is unimodular [1], i.e., det H ,(2) = ¢z~ %, We may thus
state the (N, K)-problem as completing the K x N ma-
trix

Hyo(2) Hynoa(2)
Hy(z) = : : (2)
Hg_1,0(2) Hyg_1,n-1(2)

up to an N x N unimodular matrix. It is known that
this is possible if and only if the matrix (2) is irreducible,



that is, its K x K and K x (N — K) submatrices are
left coprime [5]. This condition can be shown to be
generically true, that is, it holds for almost any choice
of the first K filters [5]. For the special case of K = 1,
it reduces to the requirement that Hy(z) does not have
any factor of the form 2=V — «, which generalizes the
corresponding result of [2].

Via the matrix Euclidean algorithm we can find a uni-
modular matrix B(z) such that, without loss of gener-
ality,

Hi(:)B(:)= [ I 0], (3)

Since B_l(z) is polynomial, it follows from (3) that the
matrix )

r | Hr(2) | _ et

B =50 = @
is a solution to our problem. The general solution can
be parametrized in terms of a particular one as follows:

Theorem 1 [6] The sel of valid analysis polyphase ma-
trices is generated as:

where U(z) is any (N — K) x (N — K) unimodular ma-
triz and E(z) ranges over all (N — K) x K polynomial
matrices.

Clearly, a solution for the synthesis FB is provided
T

by G,(z) = B(z). From (5), the general synthesis

polyphase matrix is expressed in terms of a particular
one as:

(=1 ‘Eéi)TI{;) G la e ©

The (N, 1)-problem for paraunitary FB’s has already
been considered [4, 3] but the proposed approaches are
restricted to the case that the McMillan degree of H ,(z)
is equal to that of its first row. Having determined
pr(z) as suggested in [4], simply applying eq. (5) (with
E(z) = 0 because of the paraunitariness condition) we
obtain a characterization of the class of paraunitary ma-
trices with fixed first row, which overcomes the degree
constraint mentioned above. Now U(z) ranges over all
paraunitary matrices of size N — 1, and in the special
case treated in [4, 3], it becomes a constant unitary ma-

trix, which, if real, is parametrizable with ( N2— 1 )
parameters, agreeing with [4, 3].
3 THE LINEAR-PHASE CASE

Even if the given filters are LP, the proposed algorithm
does not guarantee the LP property for the solution fil-
ters, hence the question of how to choose the parame-
ters in Theorem 1 so as to enforce LP arises. Due to
lack of space, we will only give the results here, with-
out proof. Details can be found in [6]. The literature

on LP multiband FB’s has been confined to the class of
FB’s whose filter lengths M; are equal modulo N, i.e.,
M; =m; N+ 1+1, with 0 <1 < N — 1. The polyphase
matrix in such a FB satisfies [7]

Hp(z_l) = DNAN(Z)Hp(Z)P(Z)a
where D; = diag(Jo,...,Ji—1) with J; € {-

L,
signifying the type of symmetry of H;(z), A;(2)
diag(z™°,...,z™-1) and

1

— JI+1 0
P(Z) - 0 Z_lJN—I—l

where J, denotes the exchange matrix of order n.

Theorem 2 The solutions to the LP (N,N — 1)-
problem are generated by (5) where pr(z) is found via

VLS
k:i(;mi—]\f—l—f—l—l) (7)
and
IN1Z"N 1 E(z)Dy Ay (7)) - E(z7) =

— INo12™N TR X (2) (8)

with | X (z) ]N_l;;Zi\f:_; mi—N+I+1

row of the matrix B_l(z)P(z)B(z_l). A closed for-
mula for X (z) is provided in [6].

being the last

It is well known that there are only two nontrivial classes
of 2-band LP PRFB’s [8, 2]: (i) different symmetry for
Hy(z), Hi(z) and even lengths differing by an even mul-
tiple of 2, and (ii) same (positive) symmetry and odd
lengths differing by an odd multiple of 2.

Theorem 3 The LP complementary filter of a length-
M symmetric filter Hy(z) is given by (1) where

(i) k= % —1 and
E(z)+ E(z7") = [det H ()] x
[H10(z)H10(z"") = Hin(2)Hia(z"H] (9)
if Hi(z) is symmetric of length M, and

(ii) k= Mz_l and

BE(z) =z E(z7) = [det H ,(2)] ' x
(e Hy 1 (2)Hyo(z7") = Hia(27 1) Hio(2)] (10)

if Hi(z) is antisymmetric of length M + 2.



4 DESIGN CONSIDERATIONS

The problem of optimizing the frequency characteristics
of the N — K complementary filters is one of nonlin-
early constrained optimization in its most general form,
since the unimodularity of U(z) in (5) has to be as-
sured. However, in the case of only one complemen-
tary filter (K = N — 1) the matrix U(z) reduces to
a scalar and the optimization can be done only with
respect to the elements of E(z), thus removing the non-
linear constraint. We shall adopt the stopband energy,
&= [, |Hn-1(e7*)|*dw, as the cost function in the se-
quel. Letting hy(z) = [Ho(2),..., Hy_2(2)]F denote
the vector of known filters, eq. (5) yields:

HN_l(ejw) = e_jkNwHN_l(ejw) + E(eij)hO(ejw).
(1)
Expressing each element of E(e/%) as E;(e/*) = €l e(w)
where e(w) = [1,e™% ... e 1(?=DT "and assuming
real coefficients, we obtain

E=E+207¢ + € Pe, (12)
where € = [Eg, - 6%—2]Ta

&

/S |y () 2d, (13)
b o= W /5 eTIENG [Ty (9)p(—w)dw},  (14)
P = / plw)p! (@) d, (15)

with p(w) = hy(e/¥) @ e(Nw), leading to the linear
system of equations

Pe=-b (16)

for the optimum E(z). Tt can be verified that the
(N — )m x (N — 1)m matrix P is Hermitian, with
Toeplitz blocks. Moreover, if the given filters are of high
quality, P is approximately block diagonal and positive
definite. The rich structure of P allows the use of ex-
isting efficient algorithms for the solution of (16).
Example: To demonstrate the potential advantages
of the design approach implied by the above theory, we
consider an example of a 2-band LP FB with the filters
Hy(z), Hi(z) being both symmetric of length 23 and
25, respectively (class (ii)). The magnitude responses of
the filters as designed in Example 4.1 of [8] are shown
in Fig. 1 (labeled a, d). With Hgy(z) being chosen as
the filter b of Fig. 1, a particular nonlinear-phase com-
plementary filter Hl(z) of length 23 is computed (curve
¢). Using Theorem 3(ii) and the optimization proce-
dure developed above, the filter e of Fig. 1 results as
the optimum LP solution for Hi(z). Clearly, the new
filters have higher filtering performance than those de-
signed in [8] by optimizing some of the parameters of a
cascade-lattice structure and arbitrarily setting the rest

of them. Our design method gives rise to a factorization
for H ,(z), of the form:

mer= [0 011l V)

Lo VLo ™7 at V] 0m

where ¢;(z) are first-order polynomials and E(z) is a
polynomial of order 10. The above factorization implies
a ladder-based realization [9, 10] of the FB. Further-
more, we write the normalizing scalors as:

2] [ )
] o

where 8 = [172. The effects of quantizing the coeffi-
cients in both FB’s to 24-bit mantissa and 8-bit expo-
nent are shown in Figs. 2, 3 where the relative devi-
ations of the magnitude responses are plotted. In this
precision, both FB’s retain the LP property. The preser-
vation of PR under multiplication roundoff in the lad-
der structure [11] has been verified by computing the
error in the reconstruction of a ramp signal (Fig. 4).
Counting the computational complexity in terms of the
number of multiply-accumulate (MAC) instructions re-
quired, we can see that the ladder structure needs 37
MAC as opposed to the 57 MAC per unit time required
by the lattice ASS.

5 CONCLUSIONS

The problem of designing an FIR PR ASS given some
of the filters of the analysis FB was given a general solu-
tion. The parametrization of the solution filters was ex-
ploited in optimizing their stopband characteristics and
also in obtaining LP solutions. It was shown through
an example that our approach compares favorably to
earlier designs with respect to complexity, filtering per-
formance and numerical behavior.
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Figure 3: High-pass filter magnitude deviation (lattice:
solid, ladder: dashed).

Magnitude Response (dB)

0.1

-80
0

. . . . . . . . .
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Normalized Frequency

Figure 1: Magnitude responses of the filters in the ex-
ample FB.
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Figure 4: Reconstruction error of the lattice (solid line)
and ladder (dashed line) structures.



