
Chinese Remainder Theorem : Recent Trends and New Results in Filter Banks Design

C.W.Kok   and    T.Q.Nguyen

ECE Dept., University of Wisconsin Madison, 1415 Engineering Drive, Madison, WI 53706
Tel : (608)-265-4885     Fax : (608)-262-4623      email : ckok@cae.wisc.edu   and    nguyen@ece.wisc.edu

Abstract
Recent advances in the time domain methods have led to many
new approaches in filter bank designs. The objective of this paper
is to derive a unified theory for these time domain methods, based
on the Chinese Remainder Theorem. Topics discussed in this
paper include two-channel filter banks, M-channel filter banks
and 2-D filter banks. Design examples are presented to
demonstrate the theory.

1.  Introduction
Perfect reconstruction filter banks (PRFB) can be modularized
and parametrized using many methods. Among them, a large
number of structures presented in literatures share common
characertistics. This paper aims at expressing various time
domain FB design  methods into an algebraic framework using
results on polynomial theory already existing in textbooks on
Number Theory [1]. The paper simplifies and provide a better
understanding of the mathematical structure of time domain
methods. It helps to discuss the background of various synthesis
techniques of FB that are based on blocks of subfilters and their
ladder network representation using the Chinese Remainder
Theorem (CRT). By generalizing to multivariable case, concepts
and tools of existing one dimensional two-channel FB design
methods can be extended to multi-dimensional and multi-channel
cases.

The paper is organized as follows : Section 2 discusses basic
results in polynomial theory and the connections to the two-
channel FB is discussed in Section 3. Results on linear phase
solution and  zeros at π are derived. Section 4 reviews existing
time domain design techniques and their connection to the
theorems in Section 2. Results discussed in Section 2 is
generalized to multi-dimensional and multi-channel FB using
multivariable polynomials and generalized ladder network in
Section 5.

2.  Reviews of Polynomial Remainder Theorem
We begin by reviewing polynomial remainder theorem results in
one dimension. Consider the equation

a z x z b z y z c z( ) ( ) ( ) ( ) ( )+ = (1)

where a z( ) , b z( ) and c z( )  are 1-D polynomials over a field R ,

i.e., elements of the ring R[ ]z . This ring is clearly Euclidean for

R  is a field. The equation is called a linear 1-D polynomial
equation (also known as Diophantine or Bezout equation) and its
solutions are any pairs { x z( ) , y z( ) } ∈ R[ ]z  satisfying eq(1). The
remainder theorem provides the existence condition.

Thm 1 Eq.(1) has a solution iff gcd( ( ), ( ))| ( )a z b z c z .

Proof  Only if. Let { x z y z' ( ), ' ( ) } be a solution of eq(1). Also let

a z g z a z( ) ( ) ( )= , b z g z b z( ) ( ) ( )= . (2)

Then g z a z x z b z y z c z( )( ( ) ' ( ) ( ) ' ( )) ( )+ = , so that g z c z( )| ( ) .

          If.   Let gcd( ( ), ( ))| ( )a z b z c z  and denote

g z a z b z( ) gcd( ( ), ( ))= , c z g z c z( ) ( ) ( )= . (3)

Since the ring is Euclidean, the remainder theorem implies there
exists two polynomials p z( )  and q z z( ) [ ]∈ R  such that

a z p z b z q z g z( ) ( ) ( ) ( ) ( )+ = . (4)

Multiplying by c z( ) , we obtain

a z p z c z b z q z c z c z( )( ( ) ( )) ( )( ( ) ( )) ( )+ = . (5)

Hence a solution p z c z q z c z( ) ( ), ( ) ( )  of eq.(1) is constructed.♦

We are interested in the case of c z( ) =1  which is closely
connected with FIR solutions in FB design.

Thm 2 The equation a z x z b z y z( ) ( ) ( ) ( )+ =1  has solution iff

a z( ) , b z( ) have no common zeros.

Proof Using Thm 1 and the fact that gcd( , )a b =1 iff a z( ) ,

b z( ) have no common factors.  ♦

Any two polynomials satisfying Thm 2 are called coprime
polynomials. Since eq.(1) is linear, its general solution can be
obtained from a particular solution by

Thm 3 Let { x z' ( ) , y z' ( ) } be a particular solution of eq.(1).

Then the general solution is given by

  x z x z b z t z( ) ' ( ) ( ) ( )= − ;     y z y z a z t z( ) ' ( ) ( ) ( )= + , (6)

where a z b z( ), ( )  are defined in eq.(2) and t z( )  is an arbitrary

polynomial ∈ R[ ]z .

Proof By assuming a z x z b z y z c z( ) ' ( ) ( ) ' ( ) ( )+ = , eq(2) implies

a z x z x z b z y z y z( )( ( ) ' ( )) ( )( ( ) ' ( ))− = − − . (7)

The polynomials a z b z( ), ( )  defined in eq.(2) are coprime and

satisfy a z b z b z a z( ) ( ) ( ) ( )= . As a result b z x z x z( )|( ( ) ' ( ))−  and

a z y z y z( )|( ( ) ' ( ))− , that is

  x z x z b z t z( ) ' ( ) ( ) ( )− = − ;     y z y z a z t z( ) ' ( ) ( ) ( )− = , (8)

for a polynomial t z( ) . To obtain any solution of eq.(8), t z( )

ranges over R[ ]z .                 ♦

3.  Perfect Reconstruction Two-Channel Filter Banks
The output of a two-channel FB with analysis filters H zi ( )  and

synthesis filter F zi ( )  is

Y z H z F z H z F z X z( ) [ ( ) ( ) ( ) ( )] ( )= +0 0 1 1

+ − + − −[ ( ) ( ) ( ) ( )] ( )H z F z H z F z X z0 0 1 1 . (9)

A biorthogonal system can be obtained by

H z H z H z H z z

F z H z F z H z

L
0 1 1 0

0 1 1 0

( ) ( ) ( ) ( )

( ) ( ), ( ) ( )

− − − =
= − = − −





−

(12)

Lemma 1: If the filter pair { H z H z0 1( ), ( ) } is a solution to

eq.(12), then the filter pair { H z H z0 1( ), ( ) } is also a solution,

where

H z H z H z t z0 0 1( ) ( ) ( ) ( )= − − (13)

H z H z H z k z1 1 0( ) ( ) ( ) ( )= − − (14)



and t z( ) , k z( )  are arbitrary polynomials satisfying some linear

phase conditions, and t z t z( ) ( )− =  and k z k z( ) ( )− = .

Proof  The case of linearphase filters have been proved in [11-
13]. In here, we prove the general case. Use Thm 3 with

{ ( ), ( )} { ( ), ( )}x z y z H z H z= −0 0 and{ ' ( ), ' ( )} { ( ), ( )}x z y z H z H z= −0 0

to prove eq.(13). Eq(14) is proved similarly by using
{ ( ), ( )} { ( ), ( )}x z y z H z H z= −1 1   ♦

The symmetric properties of t z( )  and k z( )  is important to
preserve the linear phase property of the solution. There are only
two linear phase PR systems that yield good solutions. One of the
solution has symmetric and even length filters. Therefore, t z( )

and k z( )  are required to be symmetric polynomials. Another
solution has odd length filters with different symmetric polarities
(symmetric/antisymmetric). For instance, if H z0 ( )  is symmetric,

t z( )  and k z( )  are required to be symmetric and antisymmetric

polynomials, respectively. Furthermore, the orders of t z( )  and

k z( )  have to be equal to L. Otherwise, additional delays are

needed in H zi ( )  to yield linearphase H zi ( ) .

Note that although the above analysis is based on linear phase
solution, Lemma 1 is also applicable in non-linear phase
orthogonal solution. The advantage of Lemma 1 is its formulation
in the time-domain which provides an easy way to control the
response of the filters. One of the interesting property is the
number of vanishing moment at π. By examining Lemma 1, a
maximally smooth FB (Daubechies wavelet) can be constructed

from the lazy FB ( H z0 1( ) ,=  H z z1
1( ) = − ) and Bernstein

polynomials. By selecting t zi ( )  and k zi ( )  to be Bernstein

polynomials, a maximally smooth wavelet FB can be constructed.
Furthermore, by appropriately inserting delay elements as
discussed in Lemma 1, linear phase  biorthogonal solution can
also be constructed.

4.  Review of Existing Methods
The application of polynomial theory in filter banks design can be
efficiently implemented by ladder network structure as shown in
Figure 1 for two-channel FB. The fundamental building blocks of
the ladder network are the subfilters t zi ( )  and k zi ( ) . Polynomial

theory works directly on the time domain and decomposes a
complicated filter banks into modules of subfilters. The
advantage of this decomposition is the optimization procedure
required in the design is very simple and provides an easy way to
control both time and frequency response of the filters.

Ladder network for the design and implementation of PRFB was
introduced in [9]. The ladder structure is shown to be robust from
coefficient quantization. Furthermore, by deriving the equivalent
ladder structure for lattice structure, the structure is shown to be
complete. The ladder network, however, does not provide
minimal implementation, in spite of the computational advantage
over lattice structure by sharing of convolution blocks between
subfilters in special cases. There are many variations of the
ladder structure including block triangular structure [10] which is
a matrix description of ladder network. However, the design of
block triangular structure in [10] is emphasized on the prediction
property of k z( )  in eq.(14). Consequently, the advantage of
polynomial theory has not been exploited. [11,12] showed that

filter response can be optimized by cascading structure using
eq.(14). However, they didn’t realize the relationship between the
ladder structure and CRT. Consequently, eq.(13) is not used and
ladder network with one way communication is constructured
which does not fully exploit the advantage of CRT.

On the other hand, [14] used Euclidean algorithm to construct
wavelet FB. Euclidean algorithm is derived from CRT and the
algorithm iterates eq.(13) and eq.(14). [15] demonstrated the
connection between Diophantine equation and two-channel FB,
which is essentially eq.(12). [16] foresees the advantage of
constructing wavelet using cascade of subfilters and derived the
lifting scheme. The simplicity of the lifting scheme is
demonstrated by using lazy PRFB as general solution and
optimize the filter response using eq.(13) and eq.(14). However,
lifting scheme is being explained as interpolation network, and
does not realize the relationship between PRFB and polynomial
theory. Consequently, the completeness of this scheme  (which is
actually a complete structure) cannot be shown. Furthermore,
linear phase solution is not considered in [16]. Similarly, [22,23]
derives the IIR PRFB using eq.(14).

The extension of ladder network to multichannel is first discussed
in [9] where three channel FB is constructed. [23] discusses the
extension of IIR filter network to three channels. But the real
break through comes in [17], where a generalized form of eq.(14)
is used to optimize the Mth filter from M-1 filters in M channel
FB. In Section 5a, the theory and application of the remainder
theorem in M-channel FB design is derived.

The extension of ladder network to multidimension was first
discussed in [20,27] where McClellan transform is used to
convert a 1D PRFB to 2D system. McClellan transformation is
applied to each subfilters in a 1D PR ladder network. Although
the resulting implementation is a ladder network, no advantage of
CRT is used [21,22,23] extend CRT to multidimension using
polynomial theory in 2D and obtain a simple design procedure
and implementation. In Section 5b, 2D polynomial theory will be
presented to demonstrate the efficiency of 2D ladder network.
Furthermore, a class of 2D wavelet will be designed to show its
flexibility in controlling both frequency and time domain
responses of the FB.

5a.  New Results : Generalization to M-Channel FB
Consider a M-channel filter banks with analysis filters H zi ( ) .

Lemma 2: If the filters { H z H z H zi M0 1( )...
~

( )... ( )− } is a solution

of eq.(15), then { H z H z H zM M0 2 1( )... ( )... ( )− − } is also a solution

where H z H z t z H zi i k k
k k i

M

( )
~

( ) ( ) ( )
,

= −
≠

−

∑
1

 and t zi ( )  are arbitrary

polynomials satisfying some linear phase conditions.

Proof Let 
~
Hi   be the coprime of the polynomial set

{ H z H z H zi i0 1 1( )... ( ), ( )− +  ... ( )H zM−1 }. Lemma 2 can be proved

by applying the results in Thm 2 and the corresponding
symmetric properties of t zi ( ) .       ♦

To exploit the linear phase constraints of t zi ( ) , consider the

analysis polyphase matrix 
~

( )E z  for filter set with 
~

( )H zi
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The polyphase matrix E( )z  of the new filters H zi ( )  is

H z
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Note that the first matrix in the right hand side, T( )z  is
invertible and has unity determinant. Consequently, the

determinant of E( )z  is the same as that of 
~

( )E z . The symmetry

of t zk ( )  changes with the symmetries of H zk ( ) . Furthermore,

the order of t zi ( )  has to be equal to the delay of the system.

Otherwise delay element has to be multiplied to E zi k, ( )  such that

the resulting filters are linear phase.

Assume that all the delay elements are being absorbed into t zi ( ) .

By repeatedly applying lemma 2 to each newly constructed
polyphase matrix, the resulting filter bank is given by

H z

H z

z z

zM
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k i

M

M

0

1
1
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∏T E (15)

where Tk z( )  has the same form as T( )z  with t zk i, ( )  appears on

the ith rows. The design problem then reduces to the
parametrization of Tk z( )  and the prototype FB. It’s relatively

easy to design the prototype FB, since one can use the FB
constructed by delay chain as prototype system. However, there
exist no simple parametrization of the matrix product. By
approriate selection of t zk i, ( ) , a class of t-matrix product solution

can be parametrized by products of permutation matrix and block
diagonal invertible matrix [18]. The block invertible matrix is
essentially the product of two t-matrices acting on adjacent rows.

[19] parametrizes the complete class of biorthogonal LPFB by
Hermite reduction. Although it considers a transform matrix
acting on columns of E( )z , it is essentially the product of two

T( )z  acting on adjacent rows as in eq.(17). The reduction works
since eq.(17) is transpose invariant. It is interesting to observe
that both [18,19] consider two channels at a time. This is because
of LPPR solution has constrained number of symmetric and
antisymmetric filters. Working on a pair of filters each time
exploits the symmetric properties and simplifies the formulation
even though working with one row is sufficient.

5 b.  New Results : Generalization to 2D
In 2D, even though the ring R[ , ]z z1 2  is not endowed by

Euclidean division, the results discussed in Section 1 still stand
hold with more restrictive conditions. In fact, we often benefit
from thinking of 2D polynomials as of elements of R[ ][ ]z z1 2  or

R[ ][ ]z z2 1 , i.e., as of 1D polynomials over a Euclidean ring. This

enables one to perform Euclidean division among coefficients.

The first difference between 1D and 2D equations materializes
when verifying Thm 1. Consider the 2D polynomial

a z z x z z b z z y z z c z z( , ) ( , ) ( , ) ( , ) ( , )1 2 1 2 1 2 1 2 1 2+ = . (16)

Thm 4  gcd( , )|a b c  whenever eq.(16) is solvable.

Proof  For a greatest common divisor d a b( ) gcd( ( ), ( ))z z z=  (and,
in fact, for any common divisor at all), the solvability of eq.(16)

implies a x b y d a x b y c( ) ( ) ( ) ( ) ( )( ( ) ( ) ( ) ( )) ( )z z z z z z z z z z+ = + =  so

that d c( )| ( )z z .      ♦

Hence, the divisibility condition remains necessary. However, it
is no longer sufficient. Roughly speaking, eq.(16) is solvable
provided iff a( )z , b( )z  are zero coprime, that is every common

zero of a( )z  and b( )z  is a zero of c( )z  with the right
multiplicity (the Fundamental Theorem of Noether). The solution
for 2D Bezout equation is

Thm 5 a z z x z z b z z y z z( , ) ( , ) ( , ) ( , )1 2 1 2 1 2 1 2 1+ =
is solvable if and only if the polynomials a( )z  and b( )z  have no

zero in common.
Proof This is a direct consequence of the famous Hilbert
Nullstelen-satz.      ♦

The Fundamental Theorem of Noether is difficult to inspect
practically. For convenience a( )z  and b( )z  are assumed to be
relatively prime, which is the case of an existing 2D PRFB. As in
Thm 3, the general solution is given by

Thm 6 Let a( )z  and b( )z  be relatively prime polynomials and

{ x' ( )z , y' ( )z } be a particular solution of eq.(18). Then the
general solution is given by
  x x b t( ) ' ( ) ( ) ( )z z z z= − ; y y a t( ) ' ( ) ( ) ( )z z z z= + , (17)

for an arbitrary polynomial t z z( ) [ , ]z R∈ 1 2  satisfying the

symmetry condition, t z z t z z( , ) ( , )− =1 2 1 2  or t z z t z z( , ) ( , )1 2 1 2− = .

Proof The proof is identical to that of Thm 3.

i.  Perfect Reconstruction 2-D Two-Channel Filter Banks
The transfer function of 2D two-channel FB is the same as
eq.(12), except that the z-transform is being replaced with 2D
vectors, i.e. z z z↔ ( , )1 2 . Therefore, it is suffices to find 2D

filters H0 ( )z  and H1( )z  satisfying eq.(12). Noticing that eq.(12)

in 2D is the 2D polynomial equation, therefore, Lemma 3 below
is for the general solutions of 2D FB.

Lemma 3: If the filter set {
~

( )H0 z ,
~

( )H1 z } is a solution to the 2D

version of eq.(12),  then { H0 ( )z , H1( )z } is also a solution where

H H H t0 0 1( )
~

( )
~

( ) ( );z z z z= − − H H H k1 1 0( )
~

( )
~

( ) ( )z z z z= − − (18)

t k( ), ( )z z  arbitrary polynomials satisfying some linear phase and

symmetry condition as in Thm 6.
Proof Use Thm.6.       ♦

To achieve linear phase solution, the subfilters t( )z  and k( )z
must have some symmetric properties. [24,25] show that the
number of symmetric and antisymmetric filters must be in pairs,
therefore, the polynomials t( )z  and k( )z  must be symmetric and

antisymmetric respectively. Furthermore, the delay of t( )z  and



k( )z  should be the same as the system delay. Otherwise delay is

inserted into 
~

( )H z0  and 
~

( )H z1  respectively.

ii.  Recursive Algorithm to Optimize 2D Filter Banks
Similarly, we can implement 2D filter banks using ladder
network. Figure 2 is the ladder network constructed with lazy
filters, t( )z  and k( )z . The recursion is the same as in 1D case.
[21] exploits the structure of 2D half band diamond filter and
proposes a similar network as in Figure 2, where t( )z  and k( )z
are selected to be bivariate Bernstein polynomials for
constructing maximally smooth wavelet filters. Although the
structure is a ladder network, Lemma 3 has not be used. From
Lemma 3, it is obvious that FB with higher multiplicity can be
constructed by repeatly iterating the structures. Similarly, [22,23]
construct a class of 2D FB with essentially the same structure,
starting with a lazy FB, and allpass function t( )z  and k( )z .
Thus, the structure is applicable for constructing IIR FB. All the
above demonstrate the simplicity of constructing 2D FB using
Lemma 3 which allows easy control of vanishing moments at π,
frequency response of the filter and the support of the FB. [26]
proposes the construction of 2D PR diamond shaped FB from one
dimensional filters, where the cascade structure is based on one-
dimensional convolution blocks which results in efficient
implementation.
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Figure 1. Two-chanel analysis filter bank in ladder structure
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Figure 2. Two dimensional two-channel analysis filter bank in ladder structure, where M is
the quincunx sampling matrix.
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Figure 3a. 4 channel linearphase paraunitary filter banks with length 8 subband filters.
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Figure 4. 2D diamond-shaped filter banks constructed by cascade structure using 27x27
maximally smooth linear-phase half band filter cascade with 27x27 linear-phase FIR filter
where the first polyphase component is minimum phase.
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Figure 3b. 4 channel minimum phase linear-phase biorthogonal filter banks with length 8

subband filters by modifing the 4th subband filters as E z E z E z4 4 10 001( )
~

( ) . ( )= −
−0 1 2. ( )E z  to suppress lowpass components.


