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ABSTRACT the second part, we recall the different estimates of the filter
parameters that are usually implemented for real-time
operations. We then compare this practical implementation
performance with optimal evolution of the internal
parameters of the MMSE suppression rule. Our results,
based on objective measures and informal subjective tests,
show that significant improvement can be gained if greater
attention is given to the filter parameters estimation.

This paper addresses the problem of single microphone
frequency domain MMSE noise reduction technique for
speech enhancement in noisy environments. We first
analysed asymptotic performance of the MMSE estimate
and compared these results with the Wiener filter. Practical
implementation of the MMSE filter is then presented.
Comparisons between optimal and practical behaviour of
the MMSE filter demonstrate that an effective improvement
in the noise reduction process can be gained if greater
attention is given to the these estimators.

2 MMSE SHORT-TIME SPECTRAL ESTIMATE

Let s(t) and b(t) denote the speech and the additive noise
processes, respectively. The observed signal x(t) is given by
x t s t b t( ) ( ) ( )= + . Let S A ek k

j k= α , Bk , X R ek k
j vk= ,

denote the kth spectral component of the signal s(t), the
noise b(t) and the noisy observations x(t) in the analysis
interval [0,T] where quasi-stationarity of speech signal is
guaranteed over the time period T.

1 INTRODUCTION

To date, many single microphone noise reduction
techniques are based on the assumption that it is mainly the
spectral magnitude rather than the phase that is important
for speech intelligibility and quality. In such systems, the
noisy speech is first windowed and then transformed in the
frequency domain. The enhanced spectral magnitude is
evaluated on each frequency according to a short-time
suppression rule. The enhanced speech signal is then
recovered by inverse transforming this spectral magnitude
estimation combined with the phase of the noisy speech
signal.

The MMSE short-time spectral amplitude estimate
proposed by Ephraim and Malah [4, 10] makes it possible
to derive a solution to the speech enhancement problem by
determining a more fundamental theoretical analysis than
conventional systems like wiener or power spectrum
subtraction suppression rule.
Under the assumed MMSE statistical model, the phase of
the clean speech signal in each spectral bin is uniformly
distributed on the interval [0,2π] and the spectral amplitude
has a Rayleigh probability density function. The MMSE
amplitude estimate �A k of the speech is thus evaluated from
Xk  by a non-linear gain function defined by G f A Xk k k� � ∆ � /

which is expressed as the product of the standard gain by a
term which contributes to the "soft-decision" aspect of the
estimate as given by :

Many approaches have been proposed for the evaluation of
the short-time suppression factor. This factor is adjusted
individually on each frequency as a function of the local
signal to noise estimation. Such methods include power
spectral subtraction [1], Wiener filtering [2], soft-decision
estimation [3] and Minimum Mean Square Error (or
MMSE) estimation [4]. An important question is : What is
the best choice for this short-time suppression rule in order
to provide the best results in terms of speech quality and
intelligibility, nature of residual noise and amount of noise
reduction ?
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Analysis of literature shows that MMSE estimate has
recently received much attention [6, 8] by many researchers
for speech enhancement in the context of mobile hands-free
radio communications. However, asymptotic properties of
this estimate (i.e. with optimal choice of the internal
parameters of the estimation process) have never been
explored. In this paper, the asymptotic behaviour of the
MMSE short-time spectral amplitude estimator is evaluated
and compared to the Wiener one in order to provide
information on the improvement in the enhanced speech
quality that can be gained with such suppression rules. In
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with Io(.) and I1(.) denote the modified Bessel functions of

zero and first order.
The parameter Λ fk� � is the generalised likelihood ratio

taking into account the uncertainty of speech presence in the
noisy observations defined by :
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with µk k kq q∆ 1−� � / , where qk  is the probability of signal

absence in the kth spectral component, and p(.) denotes a

probability density function. Hk
0  and Hk

1  denote the two
hypotheses of signal absence and presence, respectively, in
the kth spectral component.
In the previous definition of the MMSE amplitude estimate
the local a posteriori and a priori SNRs are given by :
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3 ANALYSIS OF THE MMSE SUPPRESSION RULE

In this section, the asymptotic performance of the MMSE
filter are analysed and compared to the Wiener one which is
given by :

H p f
SNR p f

SNR p fWiener k
k

k

( , )
( , )

( , )
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(4)
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Figure 2. (a) Noisy speech signal (mean SNR of 5 dB) and output
of the optimal MMSE (b) and Wiener (c) filters.

In order to evaluate the optimal behaviour of these filters,
we have made the implicit assumption that the time and
frequency domain evolution of the internal parameters of
spectral gain functions are known. The principle is shown in
Figure 1.

In order to provide information on speech distortions, we
have represented in Figure 3 the mean value of cepstral and
basilar distances between the clean speech and the enhanced
speech signals at the output of the two filters.

The clean speech and the noisy signal are used separately
for the evaluation of the filters parameters : the SNR for the
Wiener filter and the a posteriori and a priori SNR for the
MMSE suppression rule. Furthermore, in order to provide
information on the quality of the enhanced speech signal we
have also computed objective measures between the clean
speech signal and the output of the filter.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Input SNR (dB)

C
ep

st
ra

l d
is

ta
nc

e

0 5 10 15 20
0

1

2

3

4

5

6

Input SNR (dB)

B
as

ila
r 

di
st

an
ce

Figure 1. Optimal process evaluation method.
Figure 3. Cepstral  and Basilar distances as a function of the
input SNR for optimal MMSE (-x-) and Wiener (-o-) filters.Experiments have been made with speech corrupted by

background noise recorded in vehicule. Typical results are
shown on figure 2 where we have represented the noisy (a)
speech signal and the output of the filters for the MMSE (b)
and Wiener (c) suppression rules. The mean value of the
input signal to noise ratio is 5 dB. During non-speech
activity periods, we can see that the Wiener filter achieves a
better noise reduction than the MMSE suppression rule. The
residual noise power of the Wiener filter is lower than with
the MMSE approach. This observation is also true in the
low frequency components when speech is present.

These measures are represented for different values of the
mean input SNR. The basilar distance is expressed in dB
and corresponds to a perceptual objective measure with is
evaluated through a modelisation of the human ear in order
to provide the excitation pattern on the basilar membrane.
The cepstral distance is derived from the LPC coefficients
during speech activity periods.
Analysis of cepstral and basilar curves indicate that the
MMSE suppression rule gives always an enhanced speech
signal which presents more distortions than the Wiener one.



One should also note that this conclusion holds even for
input signal to noise greater than 20 dB. Further
experiments on larger sample of speech confirm these
results.

The previous MMSE estimate has been derived under the
implicit assumption that the a priori SNR and the noise
power were known. However, in real implementation these
parameters are unknown in advance and we have to provide
estimators for these quantities. The following estimators are
frequently used in real-time systems for respectively the
noise power spectrum density, the a posteriori and a priori
SNR :

They can be partly explained through the analysis of real
speech magnitude distribution. If we look at the
assumptions of the statistical MMSE model [4], we can see
that the Fourier expansion coefficients of speech are
modelled as statistically independent gaussian random
variables.

� ( ) . � ( ) . ( )P f P f B fB
t

k B
t

k
t

k= + −−λ λ1 2
1� � (5)

SNR f
X

P f
post
t

k
k

B
t

k

�

�

� � � �=
2

(6)
However, this assumption is not really true. Figure 4 shows
the cumulative distribution of real speech spectral
magnitude evaluated at different frequencies on large
sample of clean speech (male and female speakers). We
have also represented the cumulative distribution of the
magnitude of a complex gaussian signal of equal power
which lead to a Rayleigh law for its amplitude. As
comparison, we have also reported a log-normal density
which seems to have better behaviour than the Rayleigh
law.

SNR f P SNR f
S f

P f
prio
t

k post
t

k

t
k

B k

� ( ) ( ). � ( ) .
� ( )

� ( )
= − − +

−

1 1

1 2

β β (7)

where P[.] denotes half-wave rectification and the subscript
(.)t holds for the actual time interval.
This last estimator has been first proposed in the original
paper of Ephraim and Malah [4] and is evaluated in
"decision-directed" approach since it takes into account the
information in the current short-time frame but also the
result of the processing in the previous frame. Furthermore,
it has been reported [4,5] that this a priori SNR estimator
acts as a key parameter in the reduction of speech
distortions and musical noises. By incorporating these
estimators in the previous definitions of the filters we are
able to have practical implementation of the Wiener and
MMSE suppression rules.

These curves indicate clearly that real speech spectral
magnitude may have cumulative distribution that differs
from the gaussian theoretical assumption of the MMSE
model. These conclusions are also in agreement with those
reported in the work of Porter and Boll 9  on optimal
estimators for the restoration of noisy speech.
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5 EXPERIMENTAL RESULTS

Experiments have been made with speech corrupted by
background noise. The disturbing noise was recorded in car
on a highway at 120 km/h speed and added to a clean
speech signal recorded in a stopped car to obtain a noisy
signal (see Figure 2(a) for spectrogram and time waveform).
For practical implementation, we used 256 points (Fe =
8kHz) Fast Fourier Transforms of 16 ms hanning windowed
signals. An additional constraint is added to the estimated
time-variant impulse response of the noise reduction filter in
order to respect the linear convolution operation. The noise
power spectral density is evaluated during non speech
activity periods with a first-order recursive filter (time
constant 140 ms) according to equation 5.
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Time evolution of the a priori SNR are given in figure 5 for
the optimal value (equation 3) and its estimate (equation 7)
for a frequency component of 1250 Hz. On low values of
the signal to noise ratio, we can see that the time and
frequency domain evolution of the internal parameters of
the practical MMSE filter are sufficiently  far from the
optimal ones. We can notice that differences of
approximately 20 dB are observed which induces a
suppression factor far away from the optimal one thus
introducing higher residual noise power. During speech
activity periods, the estimated values are closed to the
optimal ones but we can see that the a priori SNR
estimation gives always lower values in comparison with
the optimal ones. Listening tests confirm that audible
distortions are still present in the processed speech

Figure 4. Spectral magnitude distribution of real speech (-), log-
normal (- - -) and Rayleigh (- . -) distributions.

However despite these results on optimal behaviour of the
MMSE and Wiener suppression rules, MMSE estimator has
recently received much attention by many researchers for
speech enhancement for hands-free mobile radio
communications but also for the restoration of old
recordings. How can we explain this fact ? An answer to
this question can be found through the analysis of practical
implementation of the Wiener and MMSE suppression
rules.

4 PRACTICAL IMPLEMENTATION OF THE MMSE
FILTER
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Analized Frequency = 1250 Hz suppression rule gives a high quality enhanced speech
signal with significant noise reduction in comparison with
the MMSE one. This result was explained by the fact that
the Gaussian speech assumption in the MMSE model was
not really true. Furthermore, we show that the practical
implementation of the MMSE filter introduces a
suppression factor far away from the optimal one.
Therefore, we believe that better results can be gained by
improving the filter parameters estimation in order to
provide a sufficiently high speech quality for the mobile
services.
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The time evolution of the noise reduction factor is given in
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additional noise reduction gain of 10 dB on the SNR at the
output of the noise reduction filter. When the speech
components are not present in the noisy signal, this
additional noise reduction gain presents lower values of 5
dB.
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6 CONCLUSION

In this paper, the asymptotic performance of the MMSE
Short-Time Spectral Estimator have been analysed and
compared to the Wiener ones. We have shown that, when
dealing with optimal behaviour of these filters, the Wiener


