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ABSTRACT

In this contribution we present a steerable pyramid
based on  complex wavelets named Circular Harmonic
Wavelets (CHW), suited for multiscale feature-based
representations. The Circular Harmonic Pyramid (CHP)
performs a local windowed Fourier analysis in polar co-
ordinates around any point of the image. After a survey
on the general properties of the CHP, we illustrate the
application of the CHP to the classical problem of image
restoration against additive noise.
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I. INTRODUCTION

Multiresolution representation is a flexible and
computationally effective tool for  image processing tasks.
In particular, frame-oriented approaches aim to extract
significant image attributes at different resolution levels
arranged in a pyramidal structure. As an example, the
classical laplacian pyramid based on second order
derivatives, evaluates zero crossing at different
resolutions. Recent advances in the area of the wavelets
have provided further contributions to the design of
pyramidal image representations. In [1] a pair of wavelets
defined by horizontal and vertical smoothed gradient
operators is employed for obtaining a hierarchy of edge
features, indexed by various scales or resolution levels. In
order to capture anysotropic features more explicitly, sets
of multiple wavelets individually tuned to angular
selective subbands can be employed. In particular in [2]
“steerable” wavelets are defined as oriented operators
which are rotated copies of each other and whose
orientation can be changed by linearly  combining the
basic ones. Steerable pyramids especially designed for
directional n-th order gradient computation at various
scales have been proposed in [3].

In this contribution, we present a steerable Circular
Harmonic pyramid (CHP) based on the Circular
Harmonic Wavelets (CHW), whose general properties
have been recently discussed in [4]. The CHP performs a
local windowed Fourier analysis in polar coordinates,

around any point of the image, and constitutes a
mathematical generalization of the Fourier-Mellin
transform.

In this contribution we first review the mathematical
properties of the proposed CHP. Then, we illustrate the
application of the CHP to the classical problem of image
restoration against additive noise. Extending the approach
based on first order CHWs [4], we consider the joint
Bayesian extraction of multiple features in the CHP. Some
examples of image restoration showing the quality
improvements with respect to other multiresolution
approaches are finally provided.

II. THE CIRCULAR HARMONIC WAVELETS

The CHWs are derived from the class of the so called
Circular Harmonic Functions (CHF), also referred in the
literature to as Harmonic Angular Filters (HAF). A CHF
of order n is a complex-valued, polar separable function
ψ(n) ∈ L2(R 2, d2x)  of the form

ψ(n)  [x1(r,θ), x2(r,θ)] = h(r) ejnθ  (1)

This class of functions is well known in the domain of
optical image processing, where it has been employed for
rotation invariant pattern recognition [5],[6].
Following  [7], the wavelet analysis of a 2D complex-
valued signal (image) f of finite energy, defined on the
real plane R 2, can be performed by dilating, rotating and
translating a single complex-valued function ψ. In
particular, as demonstrated in [4], a CHF ψ(n)  of the form
(1), defines a Circular Harmonic Wavelet of order n, iif it
satisfies the admissibility condition
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Then the Integral Wavelet Transform (IWT) of the
image f on L2(R 2, d2x) with respect to ψ(n)  is the scalar

product of  f  with the transformed wavelet ψ(n)
b,φ,a



Wψ f(b,φ,a) = < ψ(n)
b,f,a | f  > (4)

where ψ(n)
b,φ,a = Tb Rφ Da ψ(n)  is obtained from ψ(n) by

applying first the dilation operator Da leaving invariant
the L1(R2, d2x) norm:

Da: L1(R2, d2x) → L1(R 2, d2x),    f
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then the rotation operator Rφ :

Rφ: L2(R2, d2x) → L2(R 2, d2x),  f(x) → f(R −φ x), (6)

where Rφ denotes the left-action of the rotation group T on
the plane

Rφ : R
 2→ R 2,

            [x1, x2] → [x1cosφ -x2 sinφ, x1sinφ +x2 cosφ]    (7)

and finally, the translation operator Tb defined as

Tb: L2(R2, d2x) → L2(R 2, d2x), f(x) → f(x-b).  (8)

From (1) and (4) it follows that the IWT associated to a
CHW  of n-th order becomes:
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The peculiar form (1) of the CHFs implies that the

rotation operator Rφ reduces to the multiplication by the
complex factor e-jnφ, so that complex CHWs are
individually steerable and shiftable. In fact from (9) we
directly obtain

Wψ(n) f(b,φ,a) = e-jnφ Wψ(n) f(b,0,a).  (10)

In addition, the shiftability in orientation given by (10)
implies that the inversion formula simplifies as follows:
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When a CHW ψ(n) satisfies the following stability
condition for dyadic CHWs
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the samples of its IWT Wψ(n) f(b,φ,a) at scales a=aj =2-j,
j∈ Z, constitute a complete and stable representation of
any finite energy image f. In fact, in this case the
following inversion formula holds:
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where ψ’(n) is the dyadic dual of ψ(n) defined as:

ψ’(n)[x1(r,θ), x2(r,θ)] = h’(r) ejnθ (14)

and  h’(r) is defined in terms of its Hankel transform as
follows
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An interesting family of dyadic CHWs is the one
generated by CHFs of the form:

χ(n)(r,θ) = rn e-r2
 ejnθ  (16)

Observe that these CHFs can be thought as generated by
differentiation of the zero order Gaussian CHF  χ(z):

χ( ) *z e ezz r= =− − 2
 (17)

where we posed z= re-jθ. This family possesses the
remarkable property of being not only angularly but also
radially isomorphic with its Fourier spectrum (see [8, pg.
486 n.11.4.29]):
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From this property it can be easily verified that
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where ∗  denotes convolution.
In order to derive the basic properties of the CHWs it

is worthwhile to interpret (9) in terms of  the local Radial
Tomographic Projections (RTP), a windowed local version
of the Radon transform. At this aim we recall that, given
an image f∈ L2(R 2, d2x),  the RTP(b,θ) at b=(b1, b2) along
the direction θ is defined as
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where w(r) is a radial weighting function, and r and θ
denote polar coordinates with origin in b. Since the RTP
is periodic, it can be expand into a Fourier series, namely:
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On the other hand, for any  point b of the real plane
R2, the Fourier coefficients Gn(b) can be computed by
taking the scalar product between the image f and the
polar separable function
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so that
Gn(b) = < sn[r(x-b), θ (x-b)] | f(x) >=

= Wsn
 f(b,0,1)  (24)

Thus, for a given scale a, the IWT Wsn
 f(b,0,a)

represents  the n-th order harmonic component of a
dilated version of f, so that the IWT magnitude reveals the



presence of some features, and the phase their orientation.
Specifically Ws1 f(b,0,a) extracts the first harmonic of the
RTP, which is the fundamental harmonic of an edge
centered on x. In this case, the magnitude of Ws1 f(b,0,a)
measures the strength of the edge while its phase
measures the orientation. Likewise, Ws2 f(b,0,a) extracts
the fundamental harmonic of line patterns centered on b.
In this case θ represents the direction of the line.
Proceeding in this way, Ws3f(b,0,a) is tuned to trihedric
vertices, Ws4f(b,0,a) to orthogonal crosses, and so on. On
the other hand the CHFs can be interpreted as smoothed
n-th order derivatives. This is indicated from the presence
of the factor (-jρ ejγ)n in eq.(18)

More in general, CHFs of any order may generate
CHWs suited for multiscale feature-based representations,
that constitute a basis for general steerable wavelets. In
particular, CHFs  with the same radial profile constitute
the angular harmonics of any  steerable polar separable
wavelet. Thus, a multiscale general feature analysis can be
performed  by linearly combining the outputs of  CHF
operators of different scales and orders (CHF filter banks).

III. THE OVERCOMPLETE STEERABLE
PYRAMID

The collection of CHWs of different orders constitutes

an overcomplete dictionary D = {ψ(n)
b,0,a},  so that any

image f can be obtained by linearly combining the
dictionary elements. The overcomplete nature of the
dictionary comes from the fact that CHFs of any order can
be represented in terms of a single CHW of an arbitrary
order, and therefore the decomposition is not unique. Such
a dictionary defines the steerable circular harmonic
pyramid (CHP), suited for image processing oriented to
the class of the above said features. In fact the CHP
provides local representation of an image in terms of
harmonic components of the RTP around generic point.
Thus, the CHP combines multiscale decomposition with
tomographic decomposition, while possessing the
steerability property.

A possible representation of any finite energy image f
based on a dyadic CHP is:
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where ψ’’(n) is

ψ’’(n)[x1(r,θ), x2(r,θ)] = h rn
' ' ( ) ejnθ (26)

and h rn
' ' ( ) is defined in terms of its Hankel transform as

follows
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In general the CHP can be employed in a wide variety
of image processing applications, including edges and
vertices detection, motion estimation, image fusion and
enhancement, texture classification, etc.

Here we briefly describe an application of Bayesian
restoration of noisy images.

Denoting with zM(n,b,m) the 2-D real array associated

to the complex wavelet coefficient Wψ(n)f M(b,0,2-m)  of the
noisy image f M,  we write zM(n,b,m) as the sum of the
wavelet coefficient of the original image z(n,b,m) and a
complex Gaussian zero mean noise ∆z(n,b,m) with

covariance matrix R N
n m( , ) . In addition we model the

wavelet coefficients of the original image z(n,b,m) as
random variables with probability density function given
by a complex Gaussian mixture, i.e. a weighted sum of
Gaussian distributions:
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where [ ]G2 z R; ,µ  is the Gaussian p.d.f. of a complex r.v.

z with expectation µ and covariance matrix R.
Then the evaluation of the conditional expectation

�( , , )z bn m  of  z(n,b,m) yields:
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where the weights wi[z(n,b,m)] are given by:
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Applying such an estimate to the individual
components of the CHP and recovering the images with
the inversion formula (25) constitutes an effective noise
suppression procedure similar to the shrinking method
based on a minimax criterion in a framework of
multiresolution restoration [9].

The associated reconstruction scheme is shown in
Fig1.

An example of such an application is shown in Fig. 2.
The original image (fig. 2a) is degraded with an additive
Gaussian noise (fig. 2b). The noisy image is decomposed
with a CHP pyramid using the dyadic CHWs given by
(16), from the first to the fourth order at four resolution
levels. Finally in fig. 2c the result of the restoration
process is shown.

More sophisticated denoising schemes could be
implemented starting from a matching pursuit based CHP
decomposition, inspired to [10].
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Fig. 1. Restoration block diagram for N CHW order
and M scales.
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Fig2.a. Original image.

Fig2.b.  Noisy version (additive Gaussian noise, SNR = 16
dB).

Fig2.c.  Restored image.


