SAR IMAGES RECONSTRUCTION VIA PHASE RETRIEVAL
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ARSTRACT

A new method to accuralely reconstruct & Synihetic
Aperture Radar complex itnage starting from phase errors
alfected raw received data is presented. Tt is based on a
phase retrieval algorithm, and the unknown complex
refiectivity is found by minimising a proper functional
using the partial phase information carried out by the phase
corrupted raw data as the initial guess of an iterative
procedure. The method, which is capable of compensaling
for both 1-D and 2-ID phase errors, has been validated on
real data

1 INTRODUCTION

Phase floctuations in Synthetic Aperture Radar (SAR)
received data can be induced mainly by two factors:
propagation at GHz frequencies in turbulent atmosphere
and/or voposphere [1] and unwanted deviations from the
nominal trajectory of the platform carrying the antenna [2-
3]. These phase distortions cause a degradation in
performance of the system, producing a blurred image.

In this paper we preseni a new method to estimate
accurately a complex scene imaged by a SAR system
starting from phase error affected received data, The method
is based on the inversion of the nen linear relationship
between the raw square amplitude data and the unknown
complex retlectivity of the scene. and it uses the partial
phase information carried by the phase corrupled raw data,
The method is intimately related to the PR of & bandlimited
signal from its magnitude distribution [4]. The use of
intensity information makes the problem (o be solved nen
linear and ill-posed, so that its solution has to be found by
minimising a proper functional. The proposed procedure is
independent of the source of phase errors, allowing to
compensate for effects that low and high frequency errors on
the data induces in the complex image, do not reguire the
presence of strong scatterers in the image, is able to
compensate {or 1D and 2D phase errors, and acts directly on
SAR raw data. These features are nol contemporary
presented by any other method published in the literature.
Nole that the overall procedure acts as an image processing
lechnigue.

2 SAR IMAGING FROM PHASE CORRUPTED
DATA BY A PHASE RETRIEVAL ALGORITHM

The complex signal received by the SAR antenna can be
expressed [5] by equation:

hix’', ry= JJ pix,r)gx'—x.r'—rx,rydodr, (1)

where (x,r) and (x’.r') are the azimuth and range co-
ordinaies on the ground and on board, respectively, v is
the comnplex reflectivity coetficient of the imaged scene, and
£ is the system spacc-variant PSF (§VPSE), depending on
the electronic, geometrical, and kinematic parameters of the
SAR system, whose Fourier transforn (the system transfer
function needed for the image computing) can be
analytically evaluated [3]. The space vanance of the PSF
takes into account the required variation of the focusing
parameters when moving from the near to the far range
image points. Duc o the nature of the system transler
function, the space variance can be efficiently implemented
by operating simple shift operation in the frequency domain
[5]. If the scene dimension is sufficiently small [5], the
space variance of g can be neglecied, and the imaging
system acts like a hinear filter with a space-invariant PSF
(SIPSE); in this case Eqn. (1) reduces 1o a convolulion, so
that

Alx,r)=y®glx.r)=G7. (2)

where ® indicates two diamensional convolution, and § is
the lincar operator linking the ground reflectivity function
tor the received data, The extension of the treatment 1o the
SVPSE case is straightforward and requires only a marginal
increase in computational complexity [S].

Phase errors on the received signal can greatly affect the
accurate focusing of the final image, In particular, it can be
shown that if the motion instability of the flying platform
is not very large [2-3], only the phasce of the received signal
is affected, so that the phase pertorbed received signal is
siven by:



B, (X)) = h(x', ) exp[ida’,r)], (3)

where ¢ represents the phase term induced by motion
instability and/or mrbulence effects. According o Eyn. (3)
the amplitudes of the ideal reccived signal 2 and of the
phase corrupted received signal ki, are the same, while
their phascs are different!. For this rcason, an image
focusing technigue properly exploiting the magnitude
information present in the phasc crror affected received data
is highly desirable. Denuting by 3 the operator performing
the square amplitude of G ¥

sy=(67)Gy) =l67. (4)

where * denotes complex conjugation, it can be stated that
1 2
By =|o = || . (5)

It has to be noted that the link between the unknown
function ¥ and the daa {h,.|” is non lincar,

SAR image focusing amounis o find an estimate of the
reflectivity function of the observed scenc. In tact, even if
the actuat reflectivity function ¥ has an infinite bandwidth
{i.e., it docs not belong to a finite dimensional space), the
finite extension received signal A, by virtue of the nature
of ¢, has an essentially tinite bandwidth, so that it belongs
to a finite dimensional space. Consequently, stagting from
h, we can get at most a finite dimensional (1.e., a finite
resolution) estimate of ¥ satisfying Eqn. (5). Axs the full
knowledge of 2=y would allow conventional SAR
processing, problem (5) is analogous to a PR problem for a
hunallimilc(.l, function (#) from its intensity distribution
(Ju° = |h,,,|"). In that case, propertics of bandlimited
signals allow us to prove that, apart from a phase constant,
the only solutions of the problem are the unknewn signal
and its complex conjugate [4). In the present case, however,
h belongs (o the range of g, which is a subsct of the set
of bandlimited functions, so that, thanks o the nature of g,
this latter ambiguity can be removed [6]. However, actoal
received data are affected by measurement erors. Under this
condition, a soletion to {7) could not exist at all, so that
ihe inversion has to be performed in a generalised sense,
that is, by linding the global minimum of a proper
functional, The problem can be recast as finding ¥ such
that

poarg mip o(r). e(r)=for-ln [, ©

wherein || denotes the quadratic norm in the space of the
data,

3 THE SOLUTION ALGORITHM

The sampling ol raw data is vsvally accomplished
according to ity bandwidth, whose upper bound is given by
the known bandwidth of the system unit response g (see
Eqgn. (21, However, the phase error affected raw data A,
has a larger bandwidth so that its reliable sampling implics
a finer grid in order to avoid aliasing ctiects, By virtue of
(4) and (5), the available data have twice the bandwidth of

1" Note that, by virtue of the phase term exp[ J 19], h,, has
4 bandwidth larger than that of #.

phase error free raw data ## = Gy . If the complex phase error
affected data are sampled at the appropriate frequency (i. e.,
they are well represented by their samples), it is possible to
got the intensity data samples at the reguired sampling
frequency through interpolation. et f;,,:[ the discretised
versions of 4,1, Morcover, let 'Y ‘be a pointwise
rcprcscnyuiun of yeI', smmpled, as usuil, al the same rate
as h. ¥ will have a finite number MxN of complex
samples, where M and N are the extensions along the two
dimensions of the image. On the other hand, the syslem
PSF g is an essentially band-limited function of finite
extension and can be accordingly approximated by Px{Q
discrete complex samples. Consequently, |Ir,,,| , the data
of the inverse problem, can be represented in a space of real
dimension 2IM + PY=2(N+ ().

As a consequence of the above, the entire problem can
be accurately approximated in finite dimensional spaces. In
particular, operator 8 can be evaluated in the linig
dimensional space of the data as:

By=lG (N

where G s Lhe diseretised version of &.

Note that no similar accurate finite dimensional
approximation of the problem ix possible when using
amplitode [7] (rather than inlensity) data. In fact, even
assuming bandlimitedness of Gy, |g}’| is not band
limited, so that it cannol be represented with a finite
nwmnber of samples,

The discretised problem amounts to {inding ¥ such that

2{M+ P} 2(N+D)

o=y 3 (Bl @

is globatly minimiscd with respect o y.

Thanks to the chosen formulation, several consequences
relevant 1o an accurale minimisation of ¢ can be drawn.
First, thanks to the gquadratic nature of $, whenever the
ratio between the essential dimensign of the space of dita
{rclated to the bandwidth of |h|‘} and the essential
dimension of the unknowns (related o the bandwidth of
7} is sofficiently large, it can be argued [8] that local
minima problems can be overcome, so that {ocal (nen
ramdom) minimisation schemes can be herein otilised with
global effectiveness. In fact, as ¢ is the square distance
between the range of ¥ and the data point, the possible
occurrence of local minima is related 1o the “flatness™ of
the range of 8. The flatter this range is {lending to a plane
in the most favourable casc), the less likely is the
occurrence of local minima, It has been proved in |8] that
for yuadratic eperators ol this kind the larger is the
dimension of the space of data with respect to ke
dimcnsion of the unknowns, the flatter the manifold
representing the range of 8 in such a space, with beneficial
effects on the local minima problem, In oor case, as G is a
convolution operator, the essential dimension of dada is
more than doubled with respect to the dimension of ¥ so
that the occurrence of focal minima is not very likely.

Moreover, partial information about the phase is
available in our case, In fact, starging from the knowledge of
phasc corrupted received dia A, . we can determine the
mitial guess of the iterative procedure by the linear
inversion of (2):

'j}(l]] - G—l ;l"m , {9)



where G~ can be analytically evaluated [5]. Processing
(9) will provide detocused or blurred images. which. on the
bhasis of the experiments presented in the following Section.
will belong. under common conditions. to the attraction
region of the global minimum of (&). so that the occurrence
of local minima is avoided.

Finally. improved accuracy can be obtained in the
neighbourhood of the solution by modifying the functional
¢ through the introduction of weights enhancing the low
data valucs [8]. 1. ¢.. through the minimisation of the
functional

M+P) 2IN+Q) | a2
w(y)= 2 —;(B}‘/I\f‘lz,,,(/,.v)|_) A10)

i=1 o=l .il,,,(/- -V)‘ﬂ

values |0, (1.s)| are lower than a threshold y. they are
replaced by i (a fixed amount depending on the numerical
precision of the used computer) in the corresponding
denominators,

For the minimisation of (8). resort can be made to an
itlerative scheme of the kind

In oldcr o (T:'ercome possible overflow problems. when

}'/1A+:»:,;,(L-)+,1kékVokA (11

wherein & and (kK +1) denote respectively the & -th and
{(k + 1) -th iteration. V@ is given by:
i H (12)

where G¥ is the adjoint matrix operator of G.and A, is a
scalar factor whose value has to be chosen. at cach step. in
order to guarantee the maximum decrease along the direction
defined by A Vo. The matrix A, finally. determines the
kind of minimisation scheme which is in order. We adopt
the Polak-Ribicre scheme. a suitable compromise between
accuracy and computational complexity. It is worth noting
that in all cases V¢ can be efficiently computed through
FFT and zcro padding operations. Furthermore. the
guadratic naturc of B allows the step A, to be chosen
analvtically by solving a third degree equation [8]. so that
the whole minimisation procedure can be cfficiently
realised. Only slight modifications occur when (10) is used
in place of (8).

h,

Vo= G*{G(%)-UG(«‘NF -

4 SAR IMAGING EXPERIMENTS

Typical numerical results on actual data arc now
presented. All the experiments have been obtained by
sequentially minimising functional (8) and (10). In
agreement with the arguments in [8]. this choice exhibited
the best performance from the point of view of the
reconstructions.

The experiments have been performed on raw data from
the German airborne Experimental-SAR (E-SAR). An
image of 1550 x 768 samples. obtained by processing the
available actual data is shown in Fig. 1.a. Since the system
impulse response function is represented by 450 x 256
samples. 2048 x 1024 raw data samples and 4096 x 2048
intensity data samples. are required. The image obtained by
processing the same data corrupted by the 1D 10-th order
polynomial phase of Fig. 2 is presented in Fig. 1.b. while
the recovered image is presented in Fig. 1.c.

Figure 1.a: Intensity of a SAR image relative to the I.-SAR
mission: the image dimension is N x M =1.550 x 768

Figure 1.b: Intensity of the SAR image obtained by
corrupting the raw data of the SAR image of Fig. 1.a with
the phase of Fig. 2

Figure 1.c: [ntensity of the SAR image reconstructed from
the phase corrupted raw data of the image of Fig. 1.h
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Figure 2

Tenth order polynomial phase used to corrupt the raw
dara relative to the image of Fig. La

The reconstructions exhibit excellent quality. Note that
the degradation effects due to polynomial-like errors
primarily cause image defocusing. The defocusing effect
along the azimuth direction is evident, It is useful to focus
the attention on one of the point targets present in the
image, so that cuts across the same part of the three images
of Fig. 1 are prescented in Fig. 3, where ideal, defocused, and
reconstrucied point target are represented with solid, dashed,
and dotted lines, respectively, Note that the dotted line is
hardiy visible, thus indicating an almost perfect
fECONSruction,

Figure 3
Cuts through the point target present in Fig. I actual
(solid line), defocused (dashed line), reconstructed {dotted
line) point target

Other experiments relaled (0 random phase errors were
also presented in Ref. [9]: the reconstructions were very
good, even if the magnitude of the phase errors was
considerable.

Ax far as the phase of the reconstructed signalb is
concerned, simulated experiments, showing the capability o
perfectly retrieve also the signal phase, were presented in
Ref. {9].

It has to be nowd that the lack of compensation of these
phasc effects can be critical for those applications requiring
an accurate knowledge of the phase, as for instance in
interferometric applications, where the phase of the involved
signals are vsed to reconstruct the elevation of scene under
investigation..

5 CONCLUSIONS

We have presenicd a method that allows 1o reconstruct a
complex SAR image starting from raw data affected by
phase errors. The proposed PR based processing technique
aims to invert the non linear relationship between the
unknown reflectivity of the scene and the raw intensity
data. Unlike other PR based approaches [2], that can be
considered as post-processing technigues, the proposed
procedure acts directly on SAR raw data, The approach is
capable of compensating for ditferent kinds of phase errors,
both 1D and 2D, unlike other technigues that are based on
the assumption that the phase errors depend only on the
azimuth co-ordinate. Moreover, uniquencess of a solution can
be desumed and impurtant considerations on the local
minima problem can be made, Finally, it has also been
shown that the initial information carried by the phase
corrupted data can be usefully employed in order 1o
profitably start the minimisation procedure, In (act, under
common conditions, this point belongs w the attraction
region of the required solution.

The main limitations of the method are a slight increase
in the reguired sampling frequency, to well represent the
phase corrupted data that have a slightly increasced
bandwidth respect 1o the nominal one, and the computer
time which is anyway dependent on the amount of phase
errors which is present on the data.

The reconstructed images exhibit very high quality
when compared with the corresponding ideal ones, and the
ilerative processing, although we deal with millions of data
and unknowns, can be performed via FFT and zero padding
opcrations.
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