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ABSTRACT

A simple discrete version of B�splines is proposed� The
proposed discrete version has di�erent values from B�
splines at the discrete points� but it is proven that the
proposed discrete version tends to B�splines when the
sampling interval goes to zero� They can be evaluated
more quickly than the former discrete B�splines� only
by RRS digital �lters�

� INTRODUCTION

B�splines have the property that they can be generated
as a multifold convolution integral of rectangular func	
tions ���� This property leads to an analog circuit �
� to
generate B�splines in the continuous domain� Another
important property is that the smoothness of their wave
forms in the sense of di�erentiability is variable accord	
ing to their order m� This property is advantageous in
approximating curves� curved surfaces� and solutions for
di�erential equations�
Since it is a discrete domain where data to be ap	

proximated are available and values of an approximate
function can be evaluated in the computers� functions
de�ned in the same discrete domain as the data are
more compatible with the computer implementation
than those de�ned in a continuous domain� Hence� dis	
crete B�splines are proposed ������� which have the same
value as B�splines at the discrete points equidividing
the knot interval� The fast algorithm to compute dis	
crete B�splines has been also presented ������� based on
their representation as the discrete convolution of the
sampled rectangular functions and a sampled B�spline�
Therefore� they can be evaluated by RRS digital �lters
��� and a short FIR digital �lter�
To substitute B�splines in interpolation� their discrete

version must have the same sampled values at discrete
points� It is nice for approximation� too� because its
staircase interpolation is automatically a good approx	
imation of B�splines in L�������� However� it is not
mandatory to have the same values in approximation�
But it is crucial for a substitute to be a good approxi	
mation of B�splines�
Emphasizing the analogy in the de�nition by means of

convolution� we can consider another discrete version of

B�splines� In this paper� we propose a simpler discrete
version of B�splines� named Discrete B�spline functions�
simply as the multifold discrete version of the sampled
rectangular functions�
This version can be evaluated more quickly than the

former discrete B�splines� They have di�erent values
from B�splines at the discrete points� but it is proven
that the proposed discrete version tends to B�splines
when the sampling interval goes to zero�

� PRELIMINARIES

B�splines are given ��� as
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where N is a positive integer but one�

� PROPOSAL OF DISCRETE B�SPLINE
FUNCTIONS

We de�ne the proposed discrete version as a multifold
discrete convolution of sampled rectangular functions�
The explicit formula of the proposed discrete version is
given in this section�

Lemma ��� The �m����fold convolution xmN �k� of the
sampled rectangular function b�N �k� can be written as
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which means that ��� holds good for the case m � ��
The above �
����� and the mathematical induction com	
pletes a proof of Lemma ���� �
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Figure � shows some examples of the proposed discrete
version� The broken lines in Fig�� show B�splines�
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Figure �� Examples of Discrete B�spline functions

� LIMIT PROPERTY OF DISCRETE B�
SPLINE FUNCTIONS

In this section� it shall be proven that the proposed dis	
crete version satis�es that the distance between the dis	
crete version and the original becomes zero at the limit
N ���
The staircase interpolation �ymN �t� of the discrete ver	
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can be written as

�ymN �t�

�

�����
���	

���t�� m � ��

m

Nm��

mX
i��

����i

�m� i��i�

m��

�
j��

�dtNe �Ni� j���

m � 
� �� � � � �

����

by Lemma ���� where dae is a maximum integer not
exceeding a�
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where fc�g
m��
��� means the coe�cients of mm���� of a

polynomial in m� This completes a proof of Theorem
���� �

Theorem ��� guarantees that the discrete version be	
comes as close as required to the original B�spline func	

tions by making the sampling interval ��N shorter while
it keeps the domain compatible with the discrete data�

	 CONCLUSIONS

Discrete B�spline functions were proposed as a simple
discrete version of B�splines� The proposed discrete ver	
sion can be evaluated more rapidly than discrete B�
splines in approximation of data such as free curves in
computer graphics�
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