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ABSTRACT

A simple discrete version of B—splines is proposed. The
proposed discrete version has different values from B-—
splines at the discrete points, but it is proven that the
proposed discrete version tends to B—splines when the
sampling interval goes to zero. They can be evaluated
more quickly than the former discrete B—splines, only
by RRS digital filters.

1 INTRODUCTION

B—splines have the property that they can be generated
as a multifold convolution integral of rectangular func-
tions [1]. This property leads to an analog circuit [2] to
generate B—splines in the continuous domain. Another
important property is that the smoothness of their wave
forms in the sense of differentiability is variable accord-
ing to their order m. This property is advantageous in
approximating curves, curved surfaces, and solutions for
differential equations.

Since it is a discrete domain where data to be ap-
proximated are available and values of an approximate
function can be evaluated in the computers, functions
defined in the same discrete domain as the data are
more compatible with the computer implementation
than those defined in a continuous domain. Hence, dis-
crete B—splines are proposed [3],[4] which have the same
value as B—splines at the discrete points equidividing
the knot interval. The fast algorithm to compute dis-
crete B—splines has been also presented [3],[4] based on
their representation as the discrete convolution of the
sampled rectangular functions and a sampled B—spline.
Therefore, they can be evaluated by RRS digital filters
[5] and a short FIR digital filter.

To substitute B—splines in interpolation, their discrete
version must have the same sampled values at discrete
points. It is nice for approximation, too, because its
staircase interpolation is automatically a good approx-
imation of B—splines in L?(—00, c0). However, it is not
mandatory to have the same values in approximation.
But it is crucial for a substitute to be a good approxi-
mation of B—splines.

Emphasizing the analogy in the definition by means of
convolution, we can consider another discrete version of

B—splines. In this paper, we propose a simpler discrete
version of B—splines, named Discrete B—spline functions,
simply as the multifold discrete version of the sampled
rectangular functions.

This version can be evaluated more quickly than the
former discrete B—splines. They have different values
from B—splines at the discrete points, but it is proven
that the proposed discrete version tends to B-splines
when the sampling interval goes to zero.

2 PRELIMINARIES

B-splines are given [1] as

B™(t) = mZ%(tﬂ-)g—ly (1)

i=0

where m is called the order of B—splines. And it has
been proven [1] that

g (t) =0,
Discrete B—splines are given [3],[4] as
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where N is a positive integer but one.

3 PROPOSAL OF DISCRETE B-SPLINE
FUNCTIONS

We define the proposed discrete version as a multifold
discrete convolution of sampled rectangular functions.
The explicit formula of the proposed discrete version is
given in this section.

Lemma 3.1 The (m—1)—fold convolution x (k) of the
sampled rectangular function b (k) can be written as
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(Proof) Apparently (4) is true in the case m=1. In the
case m=2,
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which means that (4) holds good for m = 2. Assume
that (4) holds good for m > 2, i.e.,
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which means that (4) holds good for the case m + 1.

The above (6)—(8) and the mathematical induction com-
pletes a proof of Lemma 3.1. O

k
Define the proposed discrete version yjy; (N) as

i (3) = o eh®. )

Figure 1 shows some examples of the proposed discrete
version. The broken lines in Fig.1 show B-splines.
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Figure 1: Examples of Discrete B—spline functions

4 LIMIT PROPERTY OF DISCRETE B-
SPLINE FUNCTIONS

In this section, it shall be proven that the proposed dis-
crete version satisfies that the distance between the dis-
crete version and the original becomes zero at the limit
N — o0.

The staircase interpolation gy} (t) of the discrete ver-

sion yy/ (%) defined by
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by Lemma 3.1, where [a] is a maximum integer not
exceeding a.

Lemma 4.1

gn(t) =0, t<0 or t>m. (12)

(Proof) Clearly (12) is true in the case m=1 since
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which means (12) holds good for the case m + 1. The
above (13)—(15) and the mathematical induction com-
pletes a proof of Lemma 4.1. O

From (1)-(12), we have the following theorem.

Theorem 4.1
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(Proof) From (13), obviously it is true for any N > 2
in the case m = 1. In the case m > 2,
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where {c,}7"7" means the coefficients of m™ ‘=1 of a

polynomial in m. This completes a proof of Theorem
4.1. m|

Theorem 4.1 guarantees that the discrete version be-
comes as close as required to the original B—spline func-

tions by making the sampling interval 1/N shorter while
it keeps the domain compatible with the discrete data.

5 CONCLUSIONS

Discrete B—spline functions were proposed as a simple
discrete version of B—splines. The proposed discrete ver-
sion can be evaluated more rapidly than discrete B—
splines in approximation of data such as free curves in
computer graphics.
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