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ABSTRACT

A recursive approach for nonparametric speech enhancement
is developed. The underlying principle is to decompose the
vector space of the noisy signal into a signal subspace and
a noise subspace. Enhancement is performed by removing
the noise subspace and estimating the clean signal from the
remaining signal subspace. The decomposition is performed
by applying the rank-revealing ULLV algorithm to the noisy
signal. With this formulation, a prewhitening operation be-
comes an integral part of the algorithm. Linear estimation
is performed using a proposed minimum variance estimator.
Experiments indicate that the approximative method is able
to achieve a satisfactory quality of the reconstructed speech
signal comparable with eigenfilter based methods.

1 INTRODUCTION

Recently, a new approach for noise reduction of speech signals
based on subspace decomposition has been proposed [1, 2, 4].
The idea is to organize the noisy speech signal in a Toeplitz
structured data matrix, and to decompose the span into two
mutually orthogonal components.

The noise reduction algorithm in [1] is based on the Sin-
gular Value Decomposition (SVD), which is a robust and
widely used computational tool in noise suppression tech-
niques. From the SVD of the data matrix, the Least Squares
(LS) estimate of the signal-only matrix can be obtained by
neglecting the smallest singular values and finally the Toep-
litz structure of the estimate is restored to identify the time
samples. The problem is that the method deals only with
white noise and the LS estimate is sensitive to the number of
retained singular values.

In [4] is a noise reduction method based on the Quotient
Singular Value Decomposition (QSVD) presented, where a
prewhitening is an integral part of the algorithm. Moreover,
by using a Minimum Variance (MV) estimate 7] of the signal-
only matrix, the algorithm is less sensitive to the choice of
retained singular values [4].

Unfortunately, the SVD/QSVD is computationally expen-
sive and resists updating. This paper uses the rank-revealing
ULV /ULLV decomposition [8, 6, 5] to estimate the rank and
the orthogonal subspaces in the noise reduction algorithm.
A recursive ULLV algorithm for a sliding window has been
developed and an approximate MV estimate is proposed.

2 SIGNAL AND NOISE MODEL

Let x = (z1,22,- - ,a:m)T denote the noisy signal vector of
m samples and assume that the noise is additive and uncor-
related with the speech signal, i.e.,

x=s+n (1)

where s contains the speech component and n represents the
noise. A set of time shifted vectors can be organized in a
data matrix X € R™*" with Toeplitz structure
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where m > n. Moreover, assume that the noise is broad-
banded so rank(X) = rank(IN) = n and that the speech signal
can be described by a low order model, giving a rank deficient
matrix S with rank(S) = p < n. It includes, for example,
the damped compler sinusoid model, which has often been
attributed to speech signals.

Thus, the speech signal is known to lie in a subspace of
order p, but the subspace is unknown. The noise reduction
problem is to estimate the subspace, i.e., its dimension and a
suitable basis, and use this information in a signal processing
procedure. Note, that its not possible to find the ezact sub-
space.

3 LINEAR SIGNAL ESTIMATORS

One approach for nonparametric speech enhancement is lin-
ear estimation of the clean signal from the noisy signal using
signal subspace methods, which is based on the SVD of the
data matrix X partitioned as follows
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where U; € R™*?, Vi € R"*? and ; € IRP*P.

A straightforward and simple solution to the estimation
problem is obtained by use of the Least Squares (LS) cri-
terion, which minimizes the squared fitting errors between
the noisy measurements X and a low rank model S,, i.e.,

min  tr ((X—8,)"(X-8,)) = (4)

rank(S,)=p



Sis =8, =UiT, V] (5)
The estimate Srs is easily obtained without any statistical
knowledge about the signals.

Assume now that the estimator § € IR™ of the pure signal
vector s is constrained to be a linear function of the meas-
urement vector x, i.e., 8§ = Wx where W € R™*™ is a
filter matrix, then the Linear Minimum Mean-Squared Error
(LMMSE) estimator problem is to find the matrix W that
minimizes

r%‘iln trE{(Wx —s)(Wx—s)"} = (6)

Wivmse = RsR, ! (7
This theory produces the Wiener-Hopf equations as the fun-
damental design equations, i.e., we require the covariance
properties of the noisy signal and the noise process.

In practice, this information is not available and is es-
timated from the noisy data. Under stationary and ergodic
conditions, the ensemble average operator E{-} can be im-
plemented as the mean value of several time shifted vectors,
i.e., by use of the data matrix X and the signal-only matrix
S (2). This gives us the Minimum Variance (MV) estimator

min tr (XW -8)"(XW —8)) = (8)

Wiy = (X'X)'X"s (9)
which converges asymptotically to the LMMSE estimator as
the number of rows m — oo [7]. Note that W € IR"*" in
this case.

Since speech signals are nonstationary, a time varying es-
timator must be used. Such an estimator provides non-
stationary residual noise with annoying noticeable tonal char-
acteristics referred to as musical noise. This can be reduced
[2] by maintaining the residual noise below some threshold
either global or local in each eigenfilter. An ULV/ULLV
treatment of these estimators is outside the scope of this pa-
per.

4 ULV BASED SIGNAL ESTIMATION

The ULV decomposition was first introduced by Stewart [8].
A basic feature is that the ULV decomposition of a full rank
matrix X can be made rank-revealing, if there is a gap in the
singular values, e.g., when X is the sum of a rank deficient
signal matrix S and a full rank noise matrix N.

Assume that X € R™*™ has numerical rank p < n < m
corresponding to a given tolerance 7, then its singular values
satisfy

012 20p2T>0pt1 2+ 2 0n (10)
and there exists a matrix U € R™*"™ with orthogonal
columns and an orthogonal matrix V € IR"*" such that

X=ULv'= (U, U2)<I§1 g)<¥§> (11)

where L € R"*", L; € RP*? and G € R PX(P) ape
lower triangular, and

Omin (Ll)

IF||F + IG|E

From the RRULVD we can estimate the signal- and noise

subspaces defined by the gap in the singular values. The

tolerance 7 is defined based on a detection threshold in the
underlying signal processing problem.
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4.1 LS Estimate by RRULVD

An approximate least squares estimate Sazs of the signal
matrix S can be computed by essentially substituting the
ULV decomposition for the SVD based estimate [3], thus re-
placing one problem with a similar, nearby problem that can
be solved more efficiently.

Based on (5) and (11), a useful rank-p matrix approxima-
tion to X is given by

Sars =U L1V =XV, V] (14)

where U; and V; approximate the numerical column space
and row space as defined via the SVD of X.

4.2 MYV Estimate by RRULVD

The minimum variance estimate Sasy of the signal matrix S
can be obtained along the lines in [7] using an idealized rank-
revealing ULV decomposition of X € IR™*"™. With reference
o (11), the necessary conditions are
1. The signal is orthogonal to the noise in the sense:
S"N=0.
2. The matrix N = 050iscQ, where Q has orthonormal
columns: N”N =¢2,,,.I,.
3. There is a distinct gap in the singular values of the mat-
rix X: op > 0p41.
4. The off-diagonal matrix F is zero.

5. G is a diagonal matrix containing the noise-only singu-
lar values opoise-

Thus, we have
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Let the ULV decomposition of the matrix S be defined by

S=(Us Usz)<Lg1 8)(%;) (16)

where Lg; € IR?*?, then we can write the idealized rank-
revealing ULV decomposition of X in terms of the ULV de-
composition of S

X = UsiLsiVE + NV VE + NV VE  (17)
= ( (UsiLsi +NVsi)Ly| NVsao, ). )
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The matrix L%, Lx1 can be obtained by comparing the mat-
rix X7 X using the definitions of S and N with the one based
on the ULV decomposition of X (15), which gives

LiiLxi = LiLsi + 0pic Iy (18)

Using (16) and (17) in the MV definition (9) yields the desired
MYV estimate of S

Suv = XX'X)'Xx"s (19)
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where (18) has been used. This equation can be reformulated
to avoid an explicit computation of Ux

Suv = XVxiLyi(Lxi — 0noiseLxt ) Vi1 (20)

The quantity 02,;sc can be obtained from (13)
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In practice, the above mentioned conditions are never sat-
isfied exactly, but the rank-revealing ULV decomposition is

robust with respect to mild violations of these conditions.

5 ULLV BASED SIGNAL ESTIMATION

If the additive noise N is colored, NTN # ¢21,,, then a pre-
whitening transformation can be applied to the data matrix
using the QR decomposition of N = QR

XR '=SR'+NR '=SR '+Q (22)

This transformation does not change the nature of the low
order model of the speech signal while it diagonalizes the
covariance matrix of the noise. In this application the noise
matrix N can be estimated in periods without speech.

One problem concerning the prewhitening transformation
is the complicated update of the matrix XR ™' when X and
N are updated, e.g., in a recursive application. This can be
avoided by using the ULLV decomposition of the matrix pair
(X, N), which allows each matrix to be updated individually
and delivers the required factorizations without forming the
quotients and products.

The definition given here for the rank-revealing ULLV de-
composition (RRULLVD) of two matrices X € R™*™ and
N € R™*" is the one used by Luk and Qiao [6].

Assume that XN (NT is the pseudoinverse of N) has
numerical rank p < n < m corresponding to a given tolerance
7, then its quotient singular values satisfy

01220 2T>0pp1 220 (23)

and there exist matrices Ux € R™*"™ and Uy € R™*™ with
orthogonal columns and a orthogonal matrix V € IR"*" such
that

Lxi O vT
X = U U L 24
(oo ve) (5 &) (V) e
N = UNLVT (25)

where L € R™*™, Lx; € R”*? and G € R PX("~P) are
lower triangular, and

omin(Lx1) = 0p (26)

IFlE + IGIF Sppi+ -+ 00 (27)
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Thus, the ULLV decomposition reveals the rank of the matrix
XN assuming N has full rank

L 0 Uy
XNt = ( Ux UX2)< B G><U¥1> (28)
N2

Hence, working with the RRULLVD of (X, N) and the matrix
Q is mathematically equivalent to working with the RRULVD
of XR™.

5.1 LS Estimate by RRULLVD

An approximate LS estimate Sars of the low-rank signal
matrix S added colored noise can easily be obtained by first
substituting the ULV decomposition of XN* for the SVD
based estimate

(XN*)azs = Ux1Lx1Uq, (29)
and then perform a denormalization of (XN+) ALS
Sars = (XNT) 425N = Ux1Lx1 L1 V] (30)

which can be computed directly from the ULLV decompos-
ition, i.e., the prewhitening is now an integral part of the
algorithm. As before, equation (30) can be reformulated to
avoid an explicit computation of Ux

Sars =XV, V] (31)

5.2 MYV Estimate by RRULLVD

The approximate minimum variance estimate S amv of the
low-rank signal matrix in the colored noise case follows from
the least squares analysis.

Using (19) with 02,;s. = 1, the approximate MV estimate
of the normalized data matrix XINT defined by (28) is

(XN amv = Uxi(Lixy — L;}T)U%1 (32)

To obtain the corresponding approximate minimum variance
estimate of S, we must denormalize (XN*)AMV

Samv = (XN 4y N = Uxi(Lx1 — L)L V] (33)

where we have used (25). Again, this equation can be refor-
mulated to avoid an explicit computation of Ux

Samv = XViL{ 'Ly (Lx: — Ly L VT (34)
6 EXPERIMENTS

A recursive RRULLV algorithm has been developed based on
the methods given in [8, 6, 5]. Starting with initial matrices,
the decomposition is updated as X and N are taken into
account one row at a time. A new row is processed in the
following four steps. Updating: The current row of X or N is
incorporated into the decomposition. Downdating: The old-
est row of X or N is isolated and removed in the decomposi-
tion. Deflation: Establishes and maintains the rank-revealing
nature of the decomposition. Refinement: The norm of F is
reduced to improve the subspace quality. By using an ex-
ponential window, the downdating step can be omitted, but
clearly, the sliding window method can track the change in
the signal statistics more accurately when there is an abrupt
change in data.

The recursive RRULLV algorithm was applied to speech
signals contaminated by an AR(1,-0.7) noise process and the
noise matrix N was only updated in periods without speech.
All the signals were sampled at 8 kHz and the matrix dimen-
sion was m = 141 and n = 20.

The typical average SNR of a reconstructed speech seg-
ment (voiced) using 100 noise realizations and SNR = 5 dB
is illustrated in Fig. 1 as a function of the signal subspace
dimension p. Clearly, the MV estimate is less sensitive to the
choice of p compared with the LS estimate. Thus, using a
fixed value of p = 12 as in the following results, we are able



to achieve a satisfactory quality of the reconstructed speech.
The behavior of the reconstructed segment in the frequency
domain was also analyzed using a tenth order LPC model
spectra of noise-free, noisy and reconstructed (MV estimate)
speech segments, respectively. As shown in Fig. 2, the MV
estimate improves the spectrum in the regions near the dom-
inant formants. These results closely match the QSVD based
method [4].

The RRULLV algorithm using a sliding window was ap-
plied to the speech signal in Fig. 3 added broad-band noise
(global SNR of 5 dB). Observe from Fig. 4 that the global
SNR improvement using the MV estimate is about twice the
LS based improvement due to the fixed p. Moreover, the
variations among the local SNRs of the various segments are
reduced.

In the RRULLV algorithm computations can be saved by
using the exponential window, but as demonstrated in Fig. 5,
the sliding window method gives up to 6 dB better SNR, when
there is a change in the dynamics of the signal. The same is
true by comparing the SNRs obtained from the RRULLV
sliding window method with the QSVD segment based ap-
proach also illustrated in Fig. 5.

7 SUMMARY

A recursive signal subspace approach for noise reduction of
speech signals is presented. The algorithm is formulated by
means of the RRULLVD using a proposed MV estimator.
The method was demonstrated to be comparable with ei-
genfilter based methods. Integration of the RRULLVD with
perceptually more meaningful estimation criterias is a topic
of current research.
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Figure 1 Average SNR of a reconstructed voiced speech segment,
SNR=5dB, LS estimate (solid), MV estimate (dashed).
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Figure 2 LPC model spectra of noise-free speech segment (solid),
noisy speech segment, SNR=5dB (dash-dot) and MV estimate
(dashed).
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Figure 3 Noise-free speech signal.
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Figure 4 Local/global SNR of noisy speech signal (solid), LS
estimate (dash-dot) and MV estimate (dashed).
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Figure 5 Difference in SNR between sliding and exponential

window based MV estimate (solid) and between RRULLVD slid-

ing window MV estimate and QSVD segment based MV estimate

(dashed).



