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This paper is devoted to the localisation problem of
acoustic-magnetic sources moving in straight line at
constant speed. Our technique is based on the association
of Acoustic Doppler and Magnetostatic Methods. The
objective of this study is to achieve localisation with only
one sensor performing both frequency and magnetic
measurements. The set of possible location is shown to be
a circle since no angular information is available. The
subsequent developments describe an Extended Kalman
Filter with a linear observation equation to perform
maximum performance in case of poor initialisation. The
filter convergence is actually ensured when tested with
simulated signals. A small residual bias on the velocity
estimate is however noticed due to the non linearity of the
prediction equation.
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In this paper we present a localisation method of acoustic-
magnetic sources moving in straight line at constant
speed. In next part we introduce briefly Acoustic Doppler
and Magnetostatic Matched Filter Techniques that both
require straight line and constant speed movement. Then
we produce an interesting Extended Kalman Filter that is
expected to provide good convergence performances since
its measurement equation is linear. Finally we show
simulation results and discuss the properties of this data
association method.
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The straight line and constant speed movement is a strong
hypothesis that recondition a very ill-posed problem.
Indeed magnetic and omnidirectional acoustic
measurements have very poor informative content. If no
hypothesis can be done, several simultaneous
measurements must be available to yield position
estimates [1, 2, 3]. In some applications however, the
number of sensors cannot be that many and as few as one
device may be used. In this case, additional hypothesis on
the relative motion between source and sensor are

necessary. Then one should consider measured signals as
signatures since the informative content is actually due to
their relative motion. As a result, the Closest Point of
Approach (CPA) plays a determinant role in both
treatments.

In the following we will assume that the same device may
simultaneously perform acoustic and magnetic
measurements. A consequence is that two omnidirectional
measurements done at the same site cannot yield any
angular information. Therefore, the best expected result is
to localise the source in a relative coordinate system.

��� �������� ����� ! �"�#��

Acoustic emissions undergo Doppler shifts due to the
relative motion of the emitter and the receiver. In the case
of narrow band signals, a common approach [4] involves
the use of short-time periodograms to provide Maximum
Likelihood estimates of instantaneous frequency. Tracking
algorithms such as αβ filters are then applied to the
sequence to eliminate false alarms and to smooth the final
estimates. Except when SNR are sufficiently large,
frequency rate-of-change is usually not available.

In polar coordinates, the Doppler effect is described by:

f f
C

C r
= +0 �

(1)

where f0 denotes the emitted centre frequency, C the wave
velocity in the medium and r the polar distance between
the emitter and the receiver. In the Cartesian coordinate
system proposed on figure 1, geometrical considerations
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lead to the following equivalent expression:
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Taking the derivative of this expression and eliminating f0

by using (2):
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Thus, velocity may be obtained by solving a second order
equation. The same kind of second order equation may
also be obtained in polar coordinates. However, it is of
interest to notice that equation (3) simplifies if a modified
Cartesian (MC) coordinate system is used. This new
coordinate system is defined by the preceding Cartesian
direction with coordinate values given relatively to the
velocity V:
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In the modified Cartesian coordinate system, one may
easily show that equation (3) becomes:
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Ferromagnetic objects are surrounded by a magnetostatic
field and behave as magnetic dipoles, provided that they
are far enough from the sensor. Such sensors measure the
vectorial perturbation B due to this field in the earth field,
or its projection along the earth field:

[ ]B xx I M= −
µ
π

0
5

2

4
3

r
rT (6)

where M denotes the dipolar moment, µ0 is the air
permittivity and x denotes the vector between source and
sensor.

With a good approximation the signature of a constant
speed source may be decomposed on an orthogonal
Anderson basis [5] governed by a set of two parameters
(cf. figure 1):

{ } { }E V D V x V y V/ , / / , /= (7)

It is therefore possible to perform a 2-D matched filter on
these signals [6] yielding an estimate of the former set of
parameters as well as detection criteria. A specific
difficulty of this technique is that estimates are only
available shortly before the CPA.

We underline that D/V is unsigned and must be strictly
considered as a distance. On the contrary E/V is arbitrarily
signed since its origin is usually set to the CPA. However,

the orientation of the trajectory is arbitrary. It could be
strictly set if two sensors were used.
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As we underlined in the two former subsections, there is
some interest in both Acoustic and Magnetic Methods for
using the modified Cartesian (MC) coordinate system.
Therefore we derive an Extended Kalman Filter using
these coordinates. As will be shown it provides a linear
measurement equation and simplifies the prediction
equation by using (5).

In the case of only one sensor recording useful signal, the
measurement vector may be written:

[ ] [ ]Z = =E V D V f x V y V f/ / / /T T (8)

In MC coordinates, the state vector and the prediction
equation are given by:
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where X  denotes a non linear fonction of the vector X..

(9)

The third line of (9) is in fact equation (5): since speed is
assumed constant over time, the prediction of velocity
between k and k+1 may be replaced by an exact
formulation in terms of state vector components. This
should allow rapid convergence of velocity estimate in
case of poor initialisation.

Because of line three, �f must be added to the state vector
as in (9). Deriving (2), taking this expression at time
instant k and k+1, and calculating their ratio yield the fifth
line of (9).

The first, second and fourth line of (9) are the simplest
prediction equation one can use. On the contrary of the
third and fifth state variables they are also measured
quantities, what ensure fast convergence in case of poor
initialisation.

Our formulation should be considered as a smoothing
procedure of measured quantities. This smoothing enables
an accurate estimation of the frequency rate-of-change,
which in turn yields the velocity estimate. Indeed velocity
may be seen as the lacking parameter ensuring data
coherency.
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This tracking is initialised at CPA because magnetic
estimates are not available before. However the CPA time
is reliable and allows a trustworthy initialisation of
velocity, since fasympt may be roughly estimated from the
past shifted line frequency:

( )V C f f finit asympt asympt= − (10)
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When conducting noise free simulations, the three
“measured state variables” show unbiased estimates while
velocity and frequency rate-of-change exhibit residual bias
as can be seen on figure 2. This behaviour is explained by
the strong sensibility of the velocity expression in (9) to
frequency rate-of-change errors. Indeed the fifth line of (9)
gives rise to small errors that cannot be corrected by
measured quantities such as frequency.

When the frequency tends to its asymptotic value the

relative error on the frequency rate-of-change increases.
As a consequence, statistical errors on velocity rise. The
velocity formulation in (9) should be modified and
account for a trade-off between the ability of rapid
convergence at the beginning of the tracking and the
possibility of using a simpler expression at the end. We
propose the following prediction equation:

( ) ( )
( )

x x
C x x

x

x
x x x x

k

k

3 1 3
1
2

2
2 15

4

5
2
2

1 1
2

2
2

1,

.

+ = − −
+

+ +



















ξ ξ

(11)

where:

ξ =
−
−

x f

f f
asympt
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(12)

When ξ becomes smaller than a given threshold, its value
is forced to zero to prevent negative frequency rate-of-
change. This can be seen on the velocity curve of figure 3
(black arrow).

Left scale:             state estimate
                              measured quantity
Right scale:           error

Left scale:             state estimate
                              true value
Right scale:           error

������ 	:  Noisy and poorly initialised simulation. Input and
output of the data association process. With the notation of figure
1: D=1.5km, V=10m/s, the emitted narrow band noise is centered
around 200Hz. The sampling rate is 0.5Hz.

������ 
: Noise free simulation initialised at CPA. State variables x1, x2 and x4 are directly
measured and estimated without errors. On the left hand side, the state estimate curve hides
the error curve since left and right scales are simply shifted. On the right hand side, state
estimate and measured quantity are very close. Their difference is shown in light grey and is
found to be strongly correlated with the velocity error.
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The undergoing simulation illustrates the convergence
ability of the filter. Input signals are plotted in dark grey,
estimated (output) signals are black. Both refer to the left
hand side scale. Light grey curves show the error between
estimated quantities and true values. They refer to the
right hand side scale.

The smoothing effect on the measured state vector can be
easily seen, except on the first plot because of the scale
dynamic.

One can also check that the error on velocity and on the
frequency rate-of-change are strongly correlated. At time
t=250 sec., the forgetting factor ξ is forced to zero as can
be seen on the speed curves. On the same curve, a residual
bias of the order of 0.2m/s is reached.

This simulation is poorly initialised. The following values
are used:
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The state covariance matrix is set to:

[ ]P Idkk = 5.0 5.0 10 10 10-2 -1 -3 (14)

Nevertheless, convergence properties are excellent. An
other model in usual Cartesian coordinates was tested.
This filter is not linear with respect to measured variables
and as predicted in [7] shows worse convergence
properties: it does not converge in this case.
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This data association yields better estimates of localisation
and velocity in case of poor initialisation, than
formulations using polar or Cartesian coordinates do. No
angular information is available through measurements
though. Setting the geometry of figure 1 with respect to an

absolute direction such as the North direction is therefore
impossible. Two techniques may be used to overcome this
difficulty. If the sensor number must be kept as low as
possible, only one sensor records simultaneously useful
signals. However, we may keep the prediction going when
exceeding the sensor’s range until the source reaches an
other sensor. This approach assumes that the straight line
and constant speed movement is strictly verified and leads
to the intersection of two circles. If the sensor density may
be increased, algorithms involving two sensors recording
simultaneously useful signals may be investigated. This
approach is presented in [9].
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