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ABSTRACT

To achieve higher levels of integration there has been a
growing interest in recent years in designing systems
containing both analog and digital functions on a single
integrated circuit. In most cases, these are inherently
multirate systems because of the different sampling rates
employed at various stages of the system.  This paper
reviews some recent developments in this area of integrated
multirate analog-digital systems, with a special emphasis on
their applications to communication systems.

1 . INTRODUCTION

This paper discusses some recent developments in the area of
multirate signal processing, including digital, analog and
even mixed-signal analog-digital.  We start, in Section 2, by
reviewing fundamentals of multirate theory.  Selected
examples of mixed analog-digital multirate systems for
signal processing functions are discussed in Section 3.  A
brief summary of the paper and its conclusions are finally
presented in Section 4.

2 . A REVIEW OF MULTIRATE THEORY

2 . 1 Multirate Fundamentals

To achieve different sampling rates at different stages, a linear
multirate discrete-time system employs devices that either
increases or decreases the sampling rates by an integer factor
in addition to the three basic components of a linear single-
rate discrete-time system, namely, the unit delay, the adder
and the multiplier.  The basic sampling rate alteration devices
are the up-sampler and the down-sampler.

The up-sampler with an up-sampling factor of L, shown
symbolically in Figure 1(a), generates at its output a discrete-
time sequence xu[n] with a sampling rate that is L-times

higher than its input discrete-time sequence x[n] where L is a
positive integer. The up-sampling operation is implemented
by inserting L-1 equidistant zero-valued samples between two
consecutive input samples.  The input-output relation of the
up-sampler in the time-domain is given by

xu[n] =
x[n / L], n = 0, ± L, ± 2L,…

0, otherwise




(1)

Thus, if Fs is the sampling rate of x[n], the sampling rate of

xu[n] is LFs.  In the frequency-domain the corresponding

input-output relation is given by

Xu (e jω)  = X(e jωL ), (2)

where Xu (e jω)  and X(e jωL ) denote the Fourier transforms
of xu[n] and x[n], respectively.

x[n]   x u[n ]L
            

x[n]   x d[n ]M

(a)                                                               (b)

Figure 1. (a) Up-sampler and (b) Down-sampler.

Likewise, the down-sampler with a down-sampling
factor of M, shown symbolically in Figure 1(b), generates at
its output a discrete-time sequence xd[n] with a sampling rate

that is M-times lower than its input discrete-time sequence
x[n] where M is a positive integer. The down-sampling
operation is implemented by keeping every M-th sample of
the input at the output and removing M–1 in-between
samples.  The time-domain input-output relation of the
down-sampler is given by

xd[n] = x[Mn]. (3)

As a result, if Fs is the sampling rate of x[n], the sampling

rate of xd[n] is Fs/M.  In the frequency-domain the

corresponding input-output relation is given by

Xd (e jω) = 1
M

k=0

M±1

∑ Xd (e j(ω±2πk)/M ), (4)

where Xd (e jω)  and X(e jω)  denote the Fourier transforms
of xd[n] and x[n], respectively.

2 . 2 Interpolator and Decimator

As can be seen from Eq. (2), a factor-of-L sampling rate

expansion results in an L-fold compression of X(e jω)  and
L–1 repetitions, called images, of the compressed input
spectrum.  The images are filtered out by a lowpass filter
Hu(z) which replaces the zero-valued samples in xu[n] with

interpolated sample values.  The cascade of an up-sampler and
the lowpass filter shown in Figure 2(a) is called an
interpolator.  The ideal interpolation is implemented by
passing xu[n] through an ideal lowpass filter with a frequency

response [1]

Hu (e jω) =
L, 0 ≤ |ω|≤ π / L,

0, π / L < |ω|≤ π.




(5)

Likewise, in the case of a down-sampler, as indicated by

Eq. (2), Xd (e jω)  is the sum of M frequency scaled and



shifted images of X(e jω)  with adjacent images of Xd (e jω)

separated by 2π.  Thus, unless X(e jω)  is band-limited to
the region 0 ≤ ω ≤ π/M, there will be overlap of adjacent
terms in Eq. (4) causing aliasing.  As a result, to prevent any
aliasing that may be caused by the down-sampling process,
x[n] is usually first passed before down-sampling through a
lowpass filter Hd(z) approximating the ideal frequency

response

Hd (e jω) =
1, 0 ≤ |ω|≤ π / M,

0, π / M < |ω|≤ π.




(6)

The combination of an anti-aliasing filter and a down-sampler
as indicated in Figure 2(b) is usually called a decimator and
the process of lowering the sampling rate by this
arrangement is called decimation.

(a)   
y[n]

x
u
[ n]

x[n] L H u(z)

(b)   

y[n]
v[ n]

x[n] MH d(z)

Figure 2. (a) Interpolator and (b) Decimator.

For a fractional-rate sampling rate interpolation (decimation),
a cascade of an up-sampler, a lowpass filter and a down-
sampler, as indicated in Figure 3, is usually employed where
the interpolation (decimation) factor is given by L/M.

x[n] L H(z) y[n]
M

Figure 3. Sampling rate increase by a rational factor L/M.

2 . 2 Polyphase Decomposition [2]

An arbitrary sequence {x[n]} with a z-transform X(z):

X(z) = x[n]z−n

n=−∞

∞
∑ (7)

can be rewritten in the form

 X(z) = z−kXk (zM )
k=0

M−1

∑ (8)

where

Xk (z) = xk[n]z−n =
n=−∞

∞
∑

= x[Mn + k]z−n

n=−∞

∞
∑ ,  k = 0,1,  …  , M −1.

(9)

The subsequences {xk[n]} are called the polyphase

components of the parent sequence x[n], and the functions
Xk(z), given by the z-transform of {xk[n]}, are called the

polyphase components of X(z).  The relation between the
sub-sequences {xk[n]}  and the original sequence {x[n]} is

given by :

xk[n] = x[Mn + k], k = 0,1,2,…, M −1. (10)

The polyphase decomposition of a causal FIR transfer
function can be carried out by inspection.  The polyphase
decomposition of a causal IIR transfer function H(z) =
N(z)/D(z), on the other hand, is not that straight-forward.
One way to arrive at an M-branch polyphase decomposition

of H(z) is to express it in the form N'(z)/D'(zM) by
multiplying the denominator D(z) and the numerator N(z)
with an appropriately chosen polynomial and then apply an
M-branch polyhase decomposition to P'(z).

2 . 3 M-th Band Filters

A special case of the polyphase decomposition of a lowpass
interpolation (decimation) filter for a factor-of-M sampling
rate alteration is given by

H z z G zu
i

i
M

i

M

( ) ( ),= + −

=

−

∑α
1

1
(11)

where the constant α  is usually chosen as 1/M.  A lowpass
filter with a transfer function of the form of Eq. (11) is
usually called an M-th band or Nyquist filter [2].  The
impulse response hd(n) of such a filter is given by

hu (n) =
α , n = 0,

0, otherwise.




(12)

For a transfer function Hu(z) satisfying Eq. (11), it can be

shown that

Hu (z WM
k ) = M α = 1,

k=0

M±1

∑ (13)

where WM = e± j2π/M.  An M-th band filter for M = 2 is

called a half-band filter.

Under certain conditions, a causal and stable M-th band
IIR transfer function Hu(z) can be decomposed as a sum of

allpass transfer functions in the form

H (z) =
1

M
z A (z ),u

±i

i=0

M±1

i
M∑ (14)

where Ai(z) are stable allpass transfer functions for a stable

Hu(z).  In the case of a 2-band (M = 2) decomposition, it has

been shown that all Butterworth and elliptic odd-order half-
band transfer functions can be analytically decomposed in the
form of Eq.�(19) [3].  For M-th band transfer functions with
M > 2, a computer-aided design approach to develop the
decomposition has been proposed [4].

2 . 4 Efficient Implementation of Interpolators and
Decimators

It follows from above that an M-th band filter require fewer
computations than an equivalent lowpass interpolation filter.
Further savings in the computational efforts can be obtained
by realizing the interpolation filter in a polyphase
decomposition.  In the implementation of the lowpass filter
in the interpolator structure of Figure 2(a), the arithmetic



operations are carried out at the sampling rate LFs of the

output rather than at the lower sampling rate Fs of the input.

A computationally efficient structure for the implementation
of the decimator can be obtained by making use of an L-band
polyphase representation of the lowpass filter:

Hu (z) = z−iGi (zL ),
i=0

L−1

∑ (15)

resulting in the structure of Figure 4 where the arithmetic
operations are carried out at the lower sampling rate Fs.

Similar computationally efficient structures can be derived for
the implementation of decimators based on a polyphase
decomposition of the decimation filters.

L

L

L

L

  z−1

  z−1

  z
−1

G L–1(z L)

G 1( zL)

G 2( zL )

G 0(z L )

Fs Fs L Fs

Figure 4: Computationally efficient interpolator structure.

2 . 5 Filter Banks

The analysis filter bank is a set of digital bandpass filters
Hi(z) with a common input and M outputs as shown in

Figure 5(a).  The passbands of the filters Hi(z) are usually

contiguous and non-overlapping frequency bands of width
2π/M.  The input signal x[n] is thus decomposed into a set
of M subband signals xi[n] with each occupying a frequency

band of width 2π/M.  As the subband signals have a narrow
bandwidth, in many applications they are down-sampled by a
factor of M to provide computational advantages.

Likewise, the synthesis filter bank is a set of digital
bandpass filters Fi(z) with M inputs and a summed output as

shown in Figure 5(b).  The passbands of the filters Fi(z) are

usually contiguous and non-overlapping frequency bands of
width 2π/M.  The operation of the synthesis filter bank is
exactly opposite to that of the analysis filter bank.

  FL−1(z)

  F1(z)

  F0(z)
x[n] y[n]  

v0[n]

  v1[n]

  vM−1[n]   ̂ v L−1[n ]

  
ˆ v 1[n ]

  
ˆ v 0[n]

  HM−1(z)

  H1(z)

  H0(z)

(a)                                                  (b)

Figure 5: (a) Analysis filter bank, and (b) synthesis filter bank.

A novel multirate structure, developed primarily for
efficient data compression, is the M-channel quadrature mirror
filter (QMF) bank shown in Figure 6 [1].

Analysis
Filter Bank Filter Bank

SynthesisDown-
Samplers

Up-
Sampler
s

y(n)

  H1(z)

  H0(z)

  H2(z)   F2(z)

  F0(z)

  F1(z)

x
0
( n )

x 1( n )

x
2
( n )

M

M

M

M

L

L

L

LH M−1(z) F M−1(z)
x

M −1
( n )

x(n)

Figure 6. M-channel quadrature-mirror filter (QMF) bank.

In this structure, the input discrete-time signal x[n] is passed
through an analysis filter bank consisting of a set of M
bandpass filters Hi(z) decomposing x[n] into a set of M

subband signals xi[n] occupying contiguous nonoverlapping

frequency bands of width 2π/M.  The subband signals are
then down-sampled by a factor of M.  Next, these down-
sampled signals are up-sampled by a factor of M, and passed
through a synthesis filter bank composed of a set of M
bandpass filters Fi(z) to remove the images, resulting in an

output signal y[n] whose sampling rate is the same as that of
the input x[n].  The input-output relation in the z-domain is
given by

Y(z) =
1
N

Fk (z) Hk (z WN
i )

i=0

N±1

∑
k=0

N±1

∑ X(z WN
i ). (16)

The analysis and synthesis filters are usually designed to
achieve a perfect reconstruction at the output implying that
the output is a delayed and scaled replica of the input with
complete aliasing cancellation [1].  In this case, Eq. (16)

reduces to Y(z)�=�z
− n o X(z).

3 . MIXED ANALOG-DIGITAL MULTIRATE
STRUCTURES

3 . 1 Oversampling A/D Converters

The oversampling A/D converters are inherently multirate
because they relate an input sequence of samples obtained at
high frequency to an output sequence of digital words
produced at much lower frequency.  Such converters achieve
high resolution by means of oversampling and noise
shaping, and have been shown to be a good alternative for the
implementation of high resolution, low-speed A/D converters
mainly because they can accommodate the limitations
associated with the implementation of its analog processing
in digital MOS technology [5].  As illustrated in the
schematic diagram of Figure 7, an analog input signal is
sampled at a frequency significantly higher than fmax, the

higher frequency present in the input signal.  The
correspondingly high frequency bit stream produced by a
coarse quantizer is then decimated to a much lower frequency
digital signal, until the required word length is formed.  Such
decimation is performed by means of a digital decimator
consisting of a digital Nyquist lowpass filter together with a



down-sampler.  The resulting A/D converter is called a delta-
sigma A/D converter since it employs a delta-sigma
modulator as the basic building block.

MFs

A / D Conversion

R- bit
Resolution

Digital Decimator

D / A Conversion

R- bit
Resolution

N - bit

(N>>R)

R - bit
Σ

+_
H 1(z) H 2( z)

MFs

M

Figure 7: Typical architecture of a multirate analog-digital conversion
system based on sigma-delta modulation.

A special case of Figure 7 is when R = 1.  Here, the
digital estimator is a simple voltage comparator and the D/A
converter has one-bit resolution.  The delta-sigma converter
thus quantizes a very high sampling rate (e.g. 2 MHz) analog
input sample sequence with very low resolution (e.g. 1 bit).
With the aid of downsampling and digital filtering, the
sampling rate is reduced (e.g. 8 kHz) and the resolution is
increased (e.g. 10 bits).  The basic idea for SNR enhancement
in a delta sigma converter is to reduce the quantization noise
by a high-pass filter leaving only a small fraction of the
noise power inside the frequency band of interest.  Further
SNR improvement can be obtained by increasing the order of
the filter [6].  Although its basic concept has been around for
quite a few years, the integrated circuit technology needed to
make the sigma-delta converters a viable solution has only
recently become available.  The delta-sigma A/D converter
can be implemented on a single chip using MOS technology
[5], with the analog part (delta sigma converter) usually
implemented by SC circuits.  The digital part consists of the
decimator.  Recently, five delta sigma modulators, combined
in a parallel architecture, have been integrated onto a single
1.2µ CMOS chip [7].  A time-interleaved array of sigma
delta modulators also has been reported [8, 9].

3 . 2 QMF-Based A/D Converters

The type of quadrature-mirror filter (QMF) bank described
above can be used to implement a high speed A/D converter,
suitable for applications in the video-rate range (up to ≈ 100
MHz) using a number of low-speed, low-cost A/D
converters, as indicated in Figure 8 [10, 11].  Here, the
analysis stage is an SC network composed of the analysis
filter bank and the down-samplers, while the synthesis stage
is a digital network composed of the synthesis bank filters
and up-samplers.

  H N–1(z )

  H 1(z)

  H0(z)

  H 2(z)   F2( z)

  F0(z)

  F1(z)

  FN–1( z)

N

N

N

N

N

N

N

N

Analog

Input

Digital

Output

Analysis
Filter Bank Filter Bank

SynthesisDown-
Samplers

Up-
Samplers

A/D

A/D

A/D

A/D

Analog Digital

Figure 8: High-speed analog-digital conversion system based on the
quadrature-mirror filter.

Basically, in this approach the input signal is first
decomposed into a number of contiguous frequency bands
(subbands) so that a specific A/D converter (subconverter) can
be assigned to each subband signal.

Although the structure of Figure 8 is a natural
extension of the time-interleaved A/D converter [12, 13] (in
fact, the latter can be seen as a particular case, where the

analysis filters Hk(z) = z–k, and the synthesis filters Fk(z) =

z– (M–1–k)), the harmonic distortion due to mismatches
among the subconverters is substantially reduced at a little
additional cost [14].  The jitter problem due to uneven
sample timing, which is another source of error in time-
interleaved A/D converters, specially for high-frequency input
signals, is reduced by the decimation stage in Figure 8.
Similar idea has been used by Poulton et al. [15] and has
been called a two-rank architecture.  The QMF-based
converters also incorporate the advantages of subband coding:
By appropriately specifying the resolution of the
subconverters throughout the respective subbands, the
quantization noise can be separately controlled in each band,
and the shape of the reconstruction error spectrum can be
controlled as a function of the frequency.  This strategy has
been used in many speech and image coding applications.

A more efficient structure for implementation can be
obtained by realizing the analysis and the synthesis filters in
polyphase form, and then moving the down-samplers to the
left of the polyphase sub-filters in the analysis bank and
moving the up-samplers to the right of the polyphase sub-
filters in the synthesis bank, as indicated in Figure 9 for a
two-band decomposition. Using a tree structure, QMF banks
with more than two bands can be developed from the two-
band structure of Figure 9 [16].

Analog
Input

2

2

  z–1
  R0(z)

  R1(z)

A/D

A/D– –

+ + Digital
Output

2

2

  z–1

  E1(z)

  E0(z)

Analog Part Digital Part

Figure 9: Example of a more efficient structure for implementation of
a high-speed A/D conversion system based on the QMF bank.

3 . 3 Front-End Filtering Sub-Systems

Multirate signal processing filter structures are often used in
front-end sub-systems, specially for high-frequency baseband



signals as is the case in video processing applications.  The
practical advantages to be gained with this approach are best
illustrated with the example given in Figure 10(a) where a
continuous-time filter and a sampled-data decimator are
optimally combined to meet the requirements of a single-chip
front-end sub-system for digitizing video signals according to
the CCIR 601 recommendation [17]. This predominantly
multirate analog system solution can lead to significant
savings in power and silicon consumption when compared
with the functionally equivalent but predominantly multirate
digital solution illustrated in Figure 10(b) [18, 19].

Two solutions have been studied for the SC realization
of the decimation and filtering function, one based on an
active-delayed block polyphase structure that realizes a finite
impulse response transfer function with 19 coefficients and a
sampling rate reduction factor of M = 5 [20], and the other
based on the optimum implementation of a 5th order elliptic
bilinear z-transfer function with a down-sampling factor of M
= 3 [21].  In both circuit solutions, it has been shown that
all amplifiers have to settle within a time interval of
approximately 25 nS, which can be comfortably achieved
using state-of-the-art CMOS amplifiers [22].
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Figure 10: Multirate architectures for CCIR 601 digitization of video
signals. (a) Predominantly analog multirate and (b) predominantly

digital multirate.

3 . 4 Mixed Analog-Digital Implementation of
N-path Filters

The N-path filter, originally introduced for the processing of
analog continuous-time signals [23], consists of N identical
time-invariant filters, to each of which a common input
signal path and a common output signal path are periodically
connected synchronously, through appropriate modulators.
For certain bandlimited modulating functions, or certain
bandlimited input and output signals, the overall time-
varying structure can be made to appear as a time-invariant

network, which leads to its possible practical advantages
pointed out earlier. However, the difficulty in ensuring the
analog filter paths to be identical has made it difficult to
implement the overall structure in a monolithic integrated
circuit to reap its benefits. One way to overcome the problem
of mismatches between the N paths is by using the pseudo
N-path principle [24].  The SC technology has provided a
practical method for the fully integrated realization of high-
quality narrowband filters based on the N-path concept, as,
for instance, in [25], [26].  The N-path concept has also been
extended to an all-digital structure by Mitra et al. [27].

An area of potential interest for the N-path approach is
in mobile radio system applications, where low power is a
major concern.  For this purpose, the design of a mixed
analog/digital N-path architecture is currently under
investigation [28].  A predominantly digital form of
implementation of such system is illustrated in Figure 11(a),
consisting of an analog front end serial/parallel converter and
an A/D converter followed by a digital filter in each path. It
should be noted that all of the attractive features of the all-
analog N-path filters are also present in such mixed-signal
implementation.  For example, relatively simple digital
filters in each path can be used to generate an overall filter
with a highly selective bandpass filter.  Moreover, as in the
pseudo N-path approach, a high-speed digital filter can be
time-multiplexed N times to make it look as N separate
filters, thus ensuring that each path of the N-path structure is
identical. In the alternative, predominantly analog form of
implementation shown in Figure 11(b), an analog sampled-
data decimator is placed in front of the channel ADCs
working at a lower sampling frequency and thus allowing for
possible savings in power dissipation in the conversion
blocks. In this case, however, the analog decimation filter
blocks may not be as well as matched as their digital
counterparts in Figure 11(a) and hence yielding a probable
increase of inband spurious signals in the overall bandpass
filter responses of the system.
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Figure 11: (a) Predominantly digital and (b) predominantly analog
implementations of an analog/digital N-path architecture for narrow

bandpass filtering and high-frequency A/D conversion [28].

3 . 5 Block Implementation of Digital Filters

Consider a linear, time-invariant causal FIR digital filter
characterized by an impulse response h(n) of length N.  The
input-output relation of this filter is given by the
convolution sum

y(n) = h(i)x(n − r), n ≥ 0,
r=0

N−1

∑ (17)

where x(n) and y(n) are, respectively, the input and output
sequences.  The above equation permits a sequential
computation of the output, one sample at a time, beginning
with y(0).  The output sequence of an FIR filter can also be
computed in blocks of length L with L ≤ N by rewriting Eq.
(17) in a block-convolution form given by

Yk = HiXk−i ,
i=0

N-1

∑ (18)

where Xk and Yk are, respectively, the k-th input and output

blocks of length L:

Xk = x(kL) x(kL +1) ...... x(kL + L -1)[ ], (19)

Yk = y(kL) y(kL +1) ...... y(kL + L -1)[ ], (20)

and Hk, k = 0, 1, 2, ...., L _ 1, are L × L matrices composed

of the impulse response coefficients. A block
implementation of an FIR filter for L = 3 is sketched in
Figure 12 [29].

  H0   H1   H2

S/P

P/S

  ∆   ∆

Delay
Block

x(n)

y(n)

Serial-to-

Parallel

Converter

Parallel-

to-Serial

Converter

Figure 12:  Illustration of the block implementation of an FIR filter for
L = 3

Likewise, in the case of an M-th order IIR filter
characterized by a transfer function given by

H(z) =

aiz
-i

i=0

M

∑

biz
-i

i=0

M

∑
, (21)

one possible block representation is of the form

Yk+1 = −B0
−1B1Yk + B0

−1A0Xk+1 + B0
−1A1Xk , (22)

where B0, B1, A0, and A1 are L × L matrices (M ≤ L)

composed of the transfer function coefficients.  A block
implementation of an IIR filter based on Eq. (22) is sketched
in Figure 13.

Delay
Block

x(n) y(n)  A0

  A1

  –B1

P/S

Parallel-

to-Serial

Converter

S/P B0
–1

  ∆

  ∆

Serial-to-

Parallel

Converter

Figure 13: Illustration of the block implementation of an IIR filter.

A multirate interpretation of block processing is
indicated in Figure 14, also for L = 3.
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Figure 14: A schematic multirate interpretation of block processing.

3 . 6 Mixed Analog-Digital Implementation of
Block Filtering

Monolithic implementations of digital signal processors with
on-chip A/D and D/A converters have become feasible due to
the developments of mixed analog-digital CMOS-based
technologies, including BiCMOS technology which
combines the high integration density and low power
consumption of CMOS with the high-speed and driving
capability of bipolar transistors.  With such technology it is
also possible to fabricate other types of analog and digital
circuitry on the same chip, in which signal processing can be
performed partially in analog form and partially in digital
form.  On the other hand, the difficulties of implementing
single chip processors for high-frequency applications include
the large die areas occupied by high-speed A/D converters,
and the realization of very fast digital filters.  For video
applications, the flash conversion approach is still the most
popular method for A/D conversion.  However, in addition to



the large die area associated with this technique, the
inevitable input capacitance resulting from paralleling many
comparators may seriously limit the achievable conversion
speed.

In the alternative mixed analog-digital architectures
discussed herein we exploit the savings in the die area
achieved with the use of an array of low speed successive
approximation A/D converters, and the high-speed
implementation of FIR and IIR filters by using block
filtering techniques.  The potentially high-speed processing
achieved with this approach comes from the parallelism of
both the A/D conversion and the digital filtering stages.

The block processing approach lends itself easily for the
digital processing of analog signals.  A monolithic signal
processor can be implemented if an array of low-speed A/D
converters is placed between the serial/parallel register (which
can be implemented by CCD devices or SC networks) and
the block filter.  Alternatively, the block convolution can be
realized using DFT methods which, in turn, can be
implemented by CCD or SC networks.  In this case the DFT
operation can be removed from the block digital filtering
stage and placed between the decimators and the A/D array.
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Figure 15:  Illustration of a monolithic signal processor implemented
by placing an array of low-speed A/D converters between a

serial/parallel register and a block filter.

4 . CONCLUDING REMARKS

This paper discussed some recent developments in the area of
multirate signal processing, including digital, analog and
even mixed-signal analog-digital.  After reviewing
fundamentals of multirate theory a few selected examples of
mixed analog-digital multirate systems for signal processing
and conversion functions were discussed.  These included the
popular oversampling converters as well some new
architectures based on quadrature-mirror filter banks, analog-
digital interfacing for video processing, and mixed analog-
digital implementations of N-path and block filters.  In such
architectures the benefits of multirate analog-digital integrated
systems can be fully exploited for integrated circuit
implementation using modern technologies.
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