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ABSTRACT tation, so that it is often necessary the aid of human inter-
vention (see for instance [5]).

A technique for unsupervised texture synthesis by analysis is In our approach, the synthetic complex texture is obtained
presented. It is based on a stochastic approximation of a tex- by filtering a phase-only image, which retains most of the
tured field obtained by nonlinearly transforming a complex morphological properties of the original texture. This in turn
white Gaussian random field. The nonlinear transformation implies that, usually, the phase-only image is spatially cor-
is constituted by two linear filters connected by a complex related. We note that the phase of a complex image includes
hard-limiter. The identification of the texture model is per- the zero–crossing information of both the real and the imag-
formed by means of a Bussgang blind deconvolution algo- inary parts that, in principle, is sufficient for a complete
rithm exploiting a generalization to the complex case of the recovery of these components [8]. The continuous phase
Van Vleck rule. After a theoretical discussion of the method information assures a better overall quality of the synthesis
typical examples are provided. due to a lower sensitivity to noise w.r.t. the zero–crossing

information alone.
1 Introduction The proposed method relies on the statistical equivalence,

up to the second–order (autocorrelation), between the phase
Generation of real images resembling some given prototypes of the (filtered) reference texture and the phase of the syn-
is of great interest in many applications, including synthesis thetic one. This choice is motivated by the simplicity of
of textures intended for very low bit rate video coders and the generation of a phase-only image with desired autocor-
performance assessment by simulation of both computer vi- relation. In fact, this image is just the phase of a complex
sion algorithms and remote sensing systems. However, elec- Gaussian random field whose autocorrelation is determined
tromagnetic images produced by microwave sensors (SAR) by the generalization of the Van Vleck rule to the complex
as well as acoustic coherent images are usually constituted case (hyphergeometric law) [9].
by a pair of (real) images produced by the in–phase and in– In summary, the overall canonical model is a nonlinear
quadrature channels of the receiver, better represented in a scheme composed of a linear system excited by a white
complex framework. On the other hand, recent advances in Gaussian random field, cascaded with a phase–extractor and
signal theory (e.g. scale and orientation subbands wavelets a final linear system, as shown in Fig.1. This model arises
decompositions, steerable pyramids [1], circular harmonic
wavelets [2]) have shown the worthiness of a complex ap-
proach for the representation of real images.

Here, we address the problem of synthesis of complex
textures, by extending the nonlinear unsupervised texture
synthesis by analysis recently proposed in [3].

While, in principle, current texture synthesis techniques
could separately be applied to the real and imaginary com-
ponents of the complex image, such an approach would not
exploit the inter–channel correlation. Figure 1: Synthesis

To overcome this limitation, linear techniques employ-
ing rational models (MA,AR,ARMA) excited by indepen- from the analysis of the texture performed using a com-
dent identically distributed (i.i.d) random fields could be plex Bussgang deconvolution [3, 10]. A general scheme of
also adapted [4, 5, 6], as well as other techniques not based the Bussgang deconvolution algorithm is shown in Fig.2,
on particular statistical assuptions or model [7]. However, where, at convergence, the process ��� � � � can be suit-� �

the linear model based identification procedure presents an ably replaced by the process ��� � � � , which is actually� �

inherent instability, due to the i.i.d. assumption of the exci- generated in the synthesis. By choosing the complex zero–
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memory nonlinearity (CZNL) in a proper fashion, we can order) statistics and the same autocorrelation of the original
use Gaussian excitations in the synthesis phase, obtaining a textures. In our scheme the memoryless nonlinearity ����
texture model as the output of a linear system driven by a accomplishes the task of the histogram matching between
non–iid, non–Gaussian random field. the reference texture and its reconstructed version.

Since infinitely many factorizations are possible, includ-
ing the trivial solution with a phase-only image constituted
by a unitary pulse, in order to assure a generalization ca-
pability during the synthesis phase, we interprete the ref-
erence texture � as a typical realization of a random field,
and impose that the factorization (1) applies to all the typical
realizations of that random field. To this aim, at first we par-
tition the reference image into � smaller blocks, regarded
now as different realizations, and we impose the constraint
that the reconstruction filters and the memoryless non lin-
earities of any block coincide.

The identification procedure here employed, represents anFigure 2: Analysis
extention to the complex 2-D case of the blind deconvolution
method employed for blind equalization of communicationFor real textures, the signum function has been employed
channels excited by binary data sequences [11, 16]. Thisin [3], where several textures have been succesfully mimed
procedure can be summarized as follows. Let � be the 1-D�by using the Bussgang approach.
array obtained from the �-th block of the reference textureHere, we propose the use of a complex extension of the
by rearranging the columns in lexicographic order, let �signum function, namely a nonlinearity which retains only
be the linear operator associated to the filter � � 	�� � � �� �the phase, setting the magnitude to a constant value. (This
and � ��� a set of invertible zero-memory non linearities,�corresponds to choose �� for real values.) In this way,
depending on a certain number of parameters collected inby invoking the so–called hypergeometric law described in
the vector �, then � can be written as:�[9], we can determine the autocorrelation of the Gaussian

process which generates the non–Gaussian process ��� � � �� � � � � ��� � � � � � � �� � � � �� (3)� � � �
through the complex hard–limiting nonlinearity (see Fig.1).

where � is the unitary magnitude excitation field and � isIn summary, the Bussgang approach allows for simple � �

a residual random field tacking into account eventual modelparametrization of the texture model; in fact, while the first
mismatching.order statistics of the non–Gaussian excitation ��� � � � is� � � �

	determined by the selected CZNL, its second–order statistics 	 	Then, we look for the triplet ����� that maximizes
can be easily controlled on the basis of the autocorrelation of the log-likelihood of the given sample textures � , i.e.:�
the observed reference texture, in order to mimic the spatial � � �

	characteristics in a more detailed fashion. 	 	����� � 
��Max 
� 
�� ��������

In this contribution, we describe the generalization to the �

complex case of the synthesis–by–analysis technique pre- Due to the spatial dependence introduced by the filter, the
sented in [3]. Then, results of texture synthesis–by–analysis optimization problem associated to the above functional is
are shown by means of some classical examples. extremely difficult and we resort to a close approximation

obtained by applying a recursive estimation scheme to the2 THE IDENTIFICATION METHOD
weaker criterion [12]: �As illustrated in Fig.1, the proposed method assumes that 		 	� � 
��Max 
� 
�� ��� � ����a complex textured image � � ���� � � �� can be recon-� �

�structed by a phase only image � � ���� � � �� by means �� �

	 	 	� � 
��Max 
� 
�� ��� � ����of an possibly nonminimum phase linear filter 	�� � � � cas-� �

�caded with a memoryless non linearity ����, i.e. the follow- �
	ing factorization applies: 	 	� � 
��Max 
� 
�� ��� � ����

�

��� � � � � ��	�� � � � � ��� � � �� (1)� � � � � �

where � � �
 �� � � �� are the coefficients of the inverse� � � ���� ���
�� �� ��with the constraint filter � � � , � � � � �� � , and � ��� the inverse� �� �

of � ���.�

������ � � �� � � (2)� � Setting � � � �� �, and denoting with � the linear� � �� �

operator corresponding to the filter with impulse response
We note that, as enlightened by psycophisiological experi- equal to � , the observation � can be written as follows� �ments, in order to achieve a good subjective quality, syn-

�	thetic real images must present the same pointwise (first � � � � � � � � �� � � ��
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�where � is the realization of a random noise representing 3 RESULTS AND CONCLUSION�

the deconvolution error. Assuming as in [13] that the decon-
To show the capabilities of the proposed method, real tex-volution error tends to a Gaussian white noise uncorrelated
tures have been synthetized using a complex representation.with the useful signal and equating to zero the gradient of� Exploiting the simmetries in the Fourier spectrum of real	 	
� 
�� ��� � ��� with respect to � , we obtain�� 2–D signals, several definitions of 2–D analytical signal are� � � �

�� possible (see for instance [14, 15]). Here, we have adopted� �
T T the following definition of 2–D Hilbert transform [15]:	� � �� �� � � � ��� �� �� ��� �

� � �
��� ����� � � ��� �	 �� � � ��	 �� � � ������ � � � (5)�� � � � � � � � � � �� �	 � 	 �� ��� ��

� �
�	where 	 is the sample correlation matrix of � and 	 is� ��� �� where 	 �� � � � � ��� � are the impulse responses� � � �

�� �	 	the correlation matrix of � and �. of the 1–D Hilbert transformers along the horizontal �� � ��
�On the other hand, near convergence the noise � be-� and vertical �� � �� directions, respectively. Note that, using

comes isotropic and the optimal estimate of the unitary mag- the definition (5), the Hilbert transform of a real signal is a
nitude excitation reduces to a classical likelihood estimate, real signal.
so that The complex analytical signal ��� � � �������� � � ��� � � �

	��� � � � � 
������ � � ��� � � � has Fourier spectrum vanishing in the III quadrant (both ��
and � negative), twice the Fourier transform of the real�	Finally, it can be verified that the estimate � of � reduces
2–D signal ��� � � � in the I quadrant (both � and �� � � �	to the least square (parametric) fit of � , and can, in prac-�
positive) and equal to the Fourier transform of ��� � � � in� �tice, be approximated by means of an histogram matching
the II and IV quadrants (� and � of opposite sign). For�� � �		between � and � �� �.� �
the class of analytical textures, the excitation noise in Fig.1In summary, at each iteration, we first modify the his-
is an analytical Gaussian random field rather than white.togram of the texture sample in accordance to the non-

The performance of the whole synthesis–by–analysis pro-��linearity � estimated in the previous iteration, then we
� cedure is illustrated in Figs.3,4 and 5 for typical texturesextract the phase of the image obtained by deconvolving the

extracted from Brodatz’s collection. In Fig.3 the followingequalized image through the estimated inverse filter. The
real textures are displayed : D93–Fur (top–left), D84–Raffiaphase-only image is then employed to update both the filter
(top–right), D68–Wood (bottom–left) and D77–Cotton Can-and the non-linearity. The algorithm stops when the non-
vas (bottom–right). From Fig.4 we see that most of the mor-linearity and the filter do not change, apart a possible scale
phological structure is retained by the (deconvolved) phase–factor.
only textures. Note the capability of the procedure to copy

As a second step of the identification procedure we have
even structured textures, as it can be seen from Fig.5 whereto estimate the impulse response ��� � � � of the first stage� � the synthetic textures are shown.of the model. To this aim we recall that given a stationary,

In conclusion, the method is conceptually similar to other
ergodic, zero mean, Gaussian random field 
 � ���� � � ��� � techniques based on linear modeling. The basic difference�with autocorrelation function � � �� � � �, the normalized� � �� is that we have explicitly inserted in the excitation process
autocorrelation function (a.c.f.) � �� � � � of the image �� � � visually relevant morphological information. This in turn
obtained by retaining only its phase is related to the normal-

implies that the excitation cannot be simply modeled by anized a.c.f. � �� � � � by the hypergeometric law [9]:� � � i.i.d. random field. Using the phase–only information al-	 
 lows for simple generation of such non i.i.d. fields, through� � � �
� �� � � �� � �� � � � � � � � �� �� �� � � �� (4) the generalization of the Van Vleck (arcsinus) law to the� � � � � � � � � � �

� � �
complex case, known as the hyphergeometric law.

Moreover, the use of a complex representation of realwhere � ��� �� �� �� is the Gaussian hyphergeometric func-� �

signals allows for taking into account also medium–termtion. Thus, we determine the impulse response ��� � � � by� �

correlation carried out by the 2–D Hilbert transformation.constraining its autocorrelation to satisfy the hypergeometric
Another advantage of the complex representation is consti-law (4).
tuted by a better extraction of the zero–crossing of the textureThe synthesis is schematized in Fig.1, where ��� � � � is� �

using the continous phase.a realization of a complex white Gaussian field, the CZNL
Current research is devoted to exploit other complex rep-is a phase exctractor and the nonlinearity ���� is a simple

resentations as well as the use of other simple CZNL’s inhistogram matching. The analysis provides also the filters
the proposed procedure.parameters; the colouring filter ��� � � � through the use� �

of the hypergeometric law, and the shaping filter 	�� � � �� �

as the best (in a minimum mean square error sense) filter
transforming the (almost phase–only) image ��� � � � into� �

the (histogram matched) texture ��� � � � (see Fig.2).� �



Figure 3: Real textures from Brodatz’s collection: D93–Fur Figure 5: Textures of Fig.3 synthetized using complex ana-
(top–left), D84–Raffia (top–right), D68–Wood (bottom–left) lytical textures.
and D77–Cotton Canvas (bottom–right).
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