
A FAST ALGORITHM FOR MORPHOLOGICAL
EROSION AND DILATION

C. Jeremy Pye J. A. Bangham

School of Information Systems,
University of East Anglia, Norwich, NR4 7TJ, UK.
Tel: +44 0 1603 456161; Fax: +44 0 1603 453345

Email:cjp@sys.uea.ac.uk,ab@sys.uea.ac.uk

ABSTRACT

This paper describes a new algorithm for performing erosion
and dilation which is suitable for flat line-segment structur-
ing functions, and which has a computational complexity
that is independent of the structuring function size. Unlike
other proposed algorithms, the computation time required by
this method is directly proportional to the number of extrema
within the signal being processed. This makes it particularly
suitable for signals and images that have large and slowly
varying segments.

1 INTRODUCTION

Since its evolution in the late 1970's, mathematical morphol-
ogy [1] has been regarded as a powerful discipline suited
to image processing and analysis. Underlying mathemati-
cal morphology are two primitive operations, known as ero-
sion and dilation. All morphological operations can be con-
structed from a combination of erosions and dilations. A tra-
ditional and naive implementation of these two operations is
based upon the technique employed for order-statistic filter-
ing, which involves passing a window, or structuring func-
tion, over the signal and at each position recording the ith
ranked value within the window. Erosion and dilation re-
quire finding either the maximum or minimum value within
the window. This is a special case of order-statistic filter-
ing because it does not require a sorting of the windowed
values. Instead, selection of either the maximum or mini-
mum requires only a single pass through the windowed val-
ues. This has a computational complexity of O�k� where k
is the number of samples contained within the window or
structuring function. Through the wise use of structuring el-
ement decomposition [2] it is often possible to reduce the
number of computations required by splitting the structur-
ing element into a number of smaller structuring functions.
For example, if an image is dilated using a flat �k � l� size
structuring function, the same result can be achieved using
two separate structuring elements of size ��� k� and �l� ��.
This clearly reduces the number of computations per element
from kl down to k � l. Other methods [3] involve maintain-
ing local histograms of the values within the window. As
the window moves from one position to the next many of
the samples within the window remain. By monitoring the

maximum and minimum values as the histogram adapts it
is possible to reduce the computation required by a �k � l�
structuring function from kl down to �l computations per el-
ement. A drawback of this type of method is that the data
must be represented by a fixed number of bits in order to a
build a histogram. Astola [4] presents a similar method based
upon a double heap structure which elevates this constraint.
Recently several algorithms designed to perform the fast cal-
culation of the running maximum or minimum on a one
dimensional signal have been presented. Pitas [5, 6] de-
velops an algorithm based upon the ”divide and conquer”
principle designed to exploit the redundancy in the running
calculations, resulting in a reduced number of comparisons
per element log� k. Herk [7] proposes an alternative algo-
rithm based upon a restricted distance transform. Using this
method the number of comparisons per element is reduced to
just � and is independent of the window size.
Whilst these methods demonstrate significant improvement
over the general O�k� solution under certain circumstances
these algorithms are rather inefficient.

2 FAST RUNNING MAXIMUM

Consider a discrete input signal consisting of elements xi �
R� i � Z. In this paper we will only consider the running
maximum as the running minimum can be obtained by sim-
ply inverting the signal before and after processing. In order
to simplify the explanation of the algorithm the structuring
element will consist only of delayed input elements, that is

yi � max
�
xi��k���� xi��k���� � � � � xi

�
� (1)

although the more usual running maximum [5, 7] can be ob-
tained by simply shifting the output signal by ��n � ����
elements.
In order to understand the inefficiencies of the present algo-
rithms it is necessary to examine a number of input scenarios.

2.1 Monotonic

Given a monotonic signal as input, that is a signal whose
elements are all of a constant value,

xi � xi�� �� max �xi��� xi	 � xi (2)



and hence,

yi � max
�
xi��k���� xi��k���� � � � � xi

�
� xi�

(3)

2.2 Positive ramp
Given a signal in which the elements are ordered so that they
form a positive ramp,

xi � xi�� �� max �xi��� xi	 � xi (4)

and hence,

yi � max
�
xi��k���� xi��k���� � � � � xi

�
� xi�

(5)

2.3 Negative ramp
Given a signal in which the elements are ordered so that they
form a negative ramp,

xi � xi�� �� max �xi��� xi	 � xi�� (6)

and hence,

yi � max
�
xi��k���� xi��k���� � � � � xi

�
� xi��k����

(7)

2.4 Local maximum
Consider now a signal that has a positive ramp followed by a
negative ramp, forming a single maximum at position j. That
is,

xi

�
� xi�� i � j

� xi�� i � j�
(8)

From subsection (2.2) the component of the signal that forms
the positive ramp is unaffected by the filtering process, i � j.
Also, from subsection (2.3) the component of the signal that
forms a negative ramp is also unaffected, i � j � �k � ��.
However, part of the signal does not fit into either of these
cases. From equation (1), between the limits j � i � j �
�k � �� the output of the filter is given by

yi � max
�
xi��k���� xi��k���� � � � � xi

�
(9)

When the window is positioned at the extreme left of this
limit so that i � j � �, then

yi � max
�
xj��k���� xj��k���� � � � � xj��

�
(10)

clearly the window contains xj which by definition is known
to be the maximum value within the signal. Similarly, when
the window is positioned at the extreme right of these limits,
that is i � j��k���, it is clear that the window also contains
the element xi��k��� � xj . In conclusion,

yi �

���
��
xi i � j

xj j � i � j � �k � ��

xi��k��� i � j � �k � ���

(11)

2.5 Local minimum
A local minimum occurs when two local maxima exist within
the same signal. It is formed at xj when a positive ramp
follows a negative ramp, that is

xi

�
� xi�� i � j

� xi�� i � j
(12)

The output due to the negative ramp component of the signal,
is formulated in subsection (2.3),

yi � xi��k��� i � j (13)

Similarly, from subsection (2.2), the component of the sig-
nal that forms a positive ramp is unaffected by the filtering
process. That is,

yi � xi i � j � �k � �� (14)

The output between the limits j � i � j � �n � �� cannot
be determined so easily as none of the previous cases apply.
From equation (1) the output between these limits is given
by,

yi � max
�
xi��k���� xi��k���� � � � � xi

�
� (15)

This can be decomposed into two parts. Given that the signal
for all i � j forms a positive ramp the maximum of the sam-
ples between i and j is xi. Also, because the signal for all
i � j forms a negative ramp, the maximum of the samples
between i and j is xi��k���. Therefore,

yi � max
�
xi��k���� xi

�
j � i � j � �k � ��

(16)

In conclusion given a local minimum the output is given as,

yi �

���
��
xi��k��� i � j

max
�
xi��k���� xi

�
j � i � j � �k � ��

xi i � j � �k � ��� (17)

2.6 Combinations local maxima and minima
Whilst the cases so far discussed are valid they are in gen-
eral unlikely to occur individually. It is much more likely
that a number of local maxima and minima will exist within
the same signal. If local maxima occur in close proximity
to each other then the simplifications obtained by separating
the signal into various component parts, as demonstrated in
subsection (2.5), do not apply.
Figure (1) shows a signal containing three local maxima at
positions a� b� c. Where a � b � c and b�a � �k���� c�b �
�k � �� and the ordering of the maximum are xb � xa �
xc. Each local maxima is separated by a corresponding local
minima at the positions d� e� f , where a � d � b � e �
c � f . It is clear from this diagram that the output due to the
maximum xb is affected by both xa and xc.
In order to calculate the output given this interference caused
by proximity, it is necessary to re-formulate the output with



x

r r r r r r r r r r r r r r r r
�

�

xa xd

�

xb xe

�

xc xf

�

y

r r r r r r r r r r r r r r r r
�

� � � � �

ya

� � � � �

yb yc

�

Figure 1: (Top) Shows a signal x which contains three local
maxima xa, xb and xc. The dotted line attempts to illustrate
the problem caused by the close proximity of the individual
maxima. (Bottom) Shows the result after applying a running
maximum of width k � 
.

respect to each individual local maximum. Only the samples
that constitute the individual local maxima are considered in
each case.
Recall from the definition of a local maximum, equation (8),
a local maxima at xi results from samples that form a positive
ramp xi � xi�� followed by samples that form a negative
ramp xi � xi��. Therefore the collection of samples that
form the local maximum xa are denoted as xA

xA � fx� � � � xa � � � xdg� (18)

From equation (11) the output given the input collection xA,
is

yAi �

����
���
xi � � i � a

xa a � i � a� �k � ��

xa � �k � ��
a� �k � �� � i
� d� �k � ���

(19)

The output given the collection of samples that constitute the
local maximum xb can also be calculated,

xB � fxd � � � xb � � � xeg� (20)

and therefore,

yBi �

����
���
xi d � i � b

xb b � i � b� �k � ��

xb � �k � ��
b� �k � �� � i
� e� �k � ���

(21)

Indeed, the output due to every local maxima can be exam-
ined in this way,

xC � fxe � � � xc � � � xfg� (22)

and

yCi �

����
���
xi e � i � c

xc c � i � c� �k � ��

xc � �k � ��
c� �k � �� � i
� f � �k � ���

(23)

x

r r r r r r r r r r r r r r r r
�

�

xa xd

�

xb xe

�

xc xf

�

yA

r r r r r
�

�

ya

b b b b

� � � �

yB

r r r r

�

yb

b b b b

� � � �

yC

r r r r

�

yc

�
b b b b

� � � �

�

y

r r r r r r r r r r r r r r r r
�

� � � � �

ya

� � � � �

yb yc

�

Figure 2: Illustration of processing the individual local max-
imum and recombining these intermediate results to form the
output. The dotted lines (often occluded) represent the out-
put, and the solid lines represent the input.

This procedure is illustrated graphically in figure (2). In or-
der to calculate the output for the complete signal it is neces-
sary to combine these intermediate results using a maximum
operator. That is,

yi � max
�
xi� y

A
i � y

B
i � yCi

�
� (24)

where all of the elements outside of the collections are as-
sumed to be ��.

3 RESULTS AND DISCUSSION

It is clear from subsections (2.1-2.3) that the number of com-
putations required to calculate the running maximum for a
number of signals is low because many of the input samples
remain unaffected by the filtering process. Subsection (2.6)
describes a method of calculating the running maximum



which is suitable for all types of inputs whilst exploiting re-
dundancy within the signal samples. Consider a monotonic
signal as input, because the method depends upon finding
and processing only the local maxima, the only calculation
required is the initial search along the signal for the maxima,
of which there are none. Alternatively, given a signal that has
a local maxima at every other sample and therefore a maxi-
mum number of local maxima, it is clear that the amount of
intermediate storage and computation required by this basic
method is high, as it is dependent upon both the number of
maxima and also the distance between them.
The underlying principle of this method is extending or
stretching parts of the signal. This suggests that a suitable
architecture for the data streams is a type of run-length-
encoding (RLE). In fact whilst there is necessarily some
computation overhead in encoding and decoding the input
signal into RLE form, this type of architecture does allow
the intermediate operations described in subsection (2.6) to
be performed in place, elevating any storage problems. The
algorithm is described below.

EXT = RLE.start;
while (EXT)
if (EXT == local_maximum) then
EXT.width = EXT.width + k;

endif
EXT = EXT.next;

end
EXT = RLE.start;
while (EXT)
if (EXT == local_minimum) then
remain = k;
while (remain > 0)
if (EXT.width > remain) then
EXT.width = EXT.width - remain;
remain = 0;

else
remain -= EXT.width;
remove EXT;
EXT = MIN(EXT.prev, EXT.next);

endif
end

endif
EXT = EXT.next;

end

The algorithm is two stage, firstly expanding all the local
maxima and then removing the smallest samples from the
minima in order to allow for the expansion.
For comparison the computational times for the classical run-
ning maximum selection algorithm, Herks [7] algorithm and
the proposed extrema processing algorithm are given in fig-
ure (3). All of these algorithms were implemented on a SUN
SPARCstation IPC and were written using the C++ language.

4 CONCLUSIONS

This algorithm seems appropriate for signals that have large
slowly varying sections, such as images. Even in its worst
case this algorithm appears to be comparable in performance
to other methods.

0

100

200

300

400

500

0

100

200

300

400

500

3 5 9 1
7 3
3

6
5

1
2

9

2
5

7

5
1

3

1
0

2
5

2
0

4
9

rle fast

classic

herk

SE size    k

for a signal containing a 
maximum number of 
extrema.

Computation time vs. SE 
size for a signal containing 
a small number of 
extrema.

C
om

pu
ta

ti
on

 T
im

e 
(m

s)

Figure 3: (TOP) Shows the computation times given a sig-
nal containing a minimum number of extrema. (BOTTOM)
shows the computation times given a signal containing a
maximum number of extrema. In each case the signal con-
tains 8096 samples.

References

[1] J. Serra, Image analysis and mathematical morphology
Vol 1. London: Academic Press, 1982.

[2] X. Zhuang and R. M. Haralick, “Morphological structur-
ing element decomposition,” Computer Vision, Graphics
and Image Processing, vol. 35, pp. 370–382, 1986.

[3] T. S. Huang, G. J. Yang, and G. Y. Tang, “A fast two-
dimensional median filtering algorithm,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing,
vol. 27, pp. 13–18, 1979.

[4] J. Astola and T. G. Campbell, “On computation of
the running median,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 37, pp. 572–574,
1989.

[5] I. Pitas, “Fast algorithms for running ordering and
max/min calculation,” IEEE Transactions on Circuits
and Systems, vol. 36, pp. 795–804, 1989.

[6] D. Coltuc and I. Pitas, “Fast running max/min filters,”
in IEEE Workshop on Non-linear Signal and Image Pro-
cessing, pp. 871–874, June 1995.

[7] M. van Herk, “A fast algorithm for local minimum and
maximum filters on rectangular and octogonal kernels,”
Pattern Recognition Letters, vol. 13, pp. 517–521, July
1992.


