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ABSTRACT

In this paper. described tunable digital bandpass
filters whereby the centre frequency and bandwidth can be
independently related to the muitiplier cocfficients. which
permit simple frequency response adjustment by varying
the coefficients values. The bandpass filters proposed here
have a cascade forin and are composed of several second-
order recursive bandpass sections with identical
characteristics. The methods for the direct computation of
the number of second-order filters in the cascade form,
adjustable parameters and designing filter bank are shown
in this paper. The design equations straic Lhc i(ruc
parametric tuning ability of the circuit. By cascading a
few such circuits, a complete parametrically adjustable
digital frequency responsed equalizer may be realized. 1t
does not require precomputing the multiplier cocfficient
values for all designed equalizer settings.

1 DESIGN CONSIDERATIONS

Design procedures for variable cutoff frequency
dipital filters are well known [1-6]. This paper presents
the method of designing high order digital bandpass
filters whercby simply changing the multiplier number
values.

Let uws calculate the coefficients of a tunable
bandpass digital filter in the cascade form with the
following specifications: centre frequency e¢,, 3dB
bandwidth Aw and M dB bandwidth Aw,, for cutoff
frequency. The cascade structure of bandpass digilal filter
is composed of several second-order recursive bandpass
sections (filters) with identical characteristics. Let K be
the coefficient which characterizes the siccp of the
transfer function of a cascade bandpass filter and defined
as K=Aw_[Aw . Obviously. K >1, and an idcal
bandpass filter has K =1 for m1 = 0.5,

Let A*(@) be a squarc of magnitude response of a

cascade structure digital filter, and Af((o) a square of
magnitude response of a second-order section, then
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A’ (w) = [ A (@)}, where L is the number of second-
order sections in the cascade form of digital filtcr,

The result of designing will be the specifications of a
second-order section, such as quality factor ¢, and
coefficient of specification form K = Aw,_/ Aw,, and

the number 7. of the second-order sections of (he ¢ascade
filter structure, where A _ is the bandwidth of second-

order section.

2 TUNABLE DIGITAL SECOND - ORDER BAND-
PASS FILTER

The transfer function of an analog bandpass second-

order filter is:
T

P QI+ pr+AQp+ QY
where Q - quality factor of an analog fitter. €2,
bandpass centre frequency; AL2- 3dB bandwidth of 2
bandpass filter, f»- Laplace transform variable.

The transfer function of a bandpass digital filter with
bandwidth Aco_ and centre frequency @, using a bilinear
transformation p=2(1-z ])/At(1+2_') is defined
as

1
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where Af - sampling period: a,,5,D, arc digital filter
coefficients, which arc defined as:

H(z)=aq, M
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Let ¢, is a quality factor of a digital filter and

) , ,
O=q.= %m , then cquation (2) can be written as
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However, the digital filter which was designed using
cquations (1)-(3) has a quality factor ¢_ more bigger than
is required, because the frequency response is warped by
the bilinear transformation, since the analog and digital
frequencies £} and @ are related by the equation [7]:

2w Al
Q=—1itg——. )
aE T2
Denote the bandwidth AL of an analog filter by

AN w AN w 2 WAL
AQ = (@) A, where ——L =sec” ——, then
fo, 70,
the relationship between ALY and A, can be writicn
. W AL
AQ) = A, sec’ [;2 : (5)

It follows from

_Q/ L 2 a)Ay
Q_ UAﬂan_ {}Aa)_?’Q“_mtg ¥ 20

and also from cquation (3), that [4]
sin w, At
Q= w, Al 4 ©)
We can see from (6), that 0 < g, in all frequency
range wAl € (0, 7).
Finally. using equation (6), by setting to (2). the
coefficients of the digital filter arc defined as:

), Al
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P 4q_ cosm, At
29, taw A
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The computations showed that the quality factor
error is less then 0.2% for digital filter specifications of
g, =200 and relationship @, /e, €2,5..100, @, is
sampling frequency. On the other hand, if digital filter
specifications has bandwidth A, . then the cocfficients
can be calculated as

Aw At
ady = o
2+Aw At
4 cos w,Af
b =g, o
2+ Aw Al
_2-Aw At
2+ Am AL

Furthermore, if Af = 271‘/ @, is constant then equation

(7) directly provides the following result:

bl = (an - l)g,

b, =1-2a,,
where

g =2cosw, Al

Thus, the transfer funclion of a tunable bandpass
sccond-order digital filter is defined by:

l-z?
H 2y = FRR]
(2) a°l+(a‘,—l)gz '+ (1-2a,)z°

where the coefficients ¢, and g arc defined by only the

3)

bandwidth Acw, and central frequency @, respectivcly.
A number y(#) of the output set is oblained from
the numbers X(#) of the input sct from equation:
Jw(n) = x(n) - gv(n—1)+2v(n-2),
vin) =a,w(n)+gvin—1)~vin-2), 9
y(n) = v(n)—vin-2).
The corresponding circuit is given in figure 1. The
circuit has two data memories to store the clements
v(n —1} and v(n— 2). The calculation of each element of

the output sct requires two multiplications and five
additions.

x(n}

Fig.1. Circuit of the tunable sccond-order recursive
digital filicr

Thus, final calculation of the digital filter
cocfficients are given by the following equations:

w, At
oy = -
2g, + w, Al (10)
2 =2cosm, AL,

or



_ Aw A
DTy Aw At (1)
g = 2coswm,At.

3 CASCADE STRUCTURE OF A TUNABLE
DIGITAL FILTER

The square magnitude response of sccond-order
section is defined as

H(pH(-p) " 42{w),
X Aw Y o' (12)
Lw)= e @
(0" — ;) +(Aw )
Defined the lower and upper passband cutoff frequency

@, and @, of a second-order section from the following
equations:

N
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), — ) = C(V
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[43] S
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Furthermore. defincd the lower and upper stopband cutoff
frequency @, and @, of a second-order section from the
following dependencies:

@,0, = W,

_ — K.vwn
@, — @, = ¢
@, T
0)3 = 2{; ( 4‘1: +K: - Ks)a

o p S
0, = 3Gl + K2 4K,

Using equation (13). by sclting to (12}, and after some
mathematical transformations, the square of magnitude
response of a sccond-order section on the lrequencies &,
and @, can be caiculated as
A 2 2

AE((O_M): T 1 ( wjz) Do L

' w3, K (Aw,)” +(Aw,) o),
then the specification form coefficient of a sccond-order
seclion becomes

K=V -1 (19)

Let @,, and @, be a bandpass cutoff (requency of a
cascade structure digital filtcr. which has a 3dB

(13)

bandwidth Aw =®,/q and a squarc magnitude
response on the @, and @,, A’(@;,,,)=0.5. but the
square magnitude response of a second-order section in
this frequencies is Af(a)”,aln) = %/ﬁ On the other
hand

. (mﬁ’/:;) mnu
Ay, o) = — =40.5

: @ :
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and we get
qszv%—lq. (15}
The #1dB bandwidth of a cascade digital filter is
Aw, = KAw = Kw,/q, (16)

and on the other hand, a bandwidth of a sccond-order

section on the level §m of a squarc magnitude response
can be denote as

Aw, =K w,/q.. (17)
Using (15), (16) and (17 we get
K, =vi¥2-1K. (18)

Furthermaore, using equation (18), by sciling (14), we can

wrile:
L/
W %5—1)' "

Remark. The equation (14) and (19) do not depend on the
quality factor ¢ and the centre frequency ®,. and the
result {14) is a particular case of (19) for L.=1.

Theorem. The value of a coefficient K is limited for
L — o0, and defined as

log,{1/m). (20
Proof Letus X = 1/ L | then

Ly 4
]lmK =limK? _Itm(/#

X x—l} 2 _ l

, and after some

mathcimatical (ransformations. we get

oyl y ik

lim K° =lim

e x>0 2°In2  In2
=log,(¥/)>0,

and y
}imK = Jlog,(/m)e

Froin the theorem follows, that we do not get the
cascade structurc of a digital filter with K =1 for
L — o0 and we do not get the cascade form of a digital

filter with K better then +flog, (1/m) .

Thus, the results (19), (20) and (15) give for us
number {. of a second-order scctions in the cascade



structure digitai filter and thc specifications of the basic

second-order scction. If K > 4/l/m—1

necessary to have only onc second-order section for
bandpass digital filter. i.e. L = 1. For thc casc, when

Jlog (I/m) < K <fi/m-1, L

sections arc required for a bandpass digital filter. The
number of L is defined by (19) and rounding to the
bigger integer number.

. then it is

second-order

4 THE DESIGN ALGORITHM

The design algorithm as [ollows:

Step 1. Calculate K by (20)

and if K < K_ . then we can not get the digital
filter with specifications of K and #1. END.

Step 2. Calculate K by (14)

and if K > K then I. = 1. goto step 5.

Step 3. Define the number L of second-order
sections in the cascade structurc of digital filter by
equation {19).

Step 4. Compute the quality factor ¢, (13) and
bandwidth @_ of thc second-order section

Step 5. Calculate the coefficients of the second-order
section by the equations for the tunable digital filter (10 or

(11).
Step 6. END.

5 EXAMPLE

Design the hiph-order bandpass digital filter with
tunable centre frequency for the following specifications:
3dB bandwidth is 40 Hz; mdB bandwidth is 400 Hz, m-
level is 0.0001 (-40 dB): central frequencics: 1700; 1500:
1300; 1100; 900; 700: 1.e. calculate the cocfficients of the
filter bank is composed of six high-order filters with an
identical 3dB bandwidth.

Solution: , /@, =4, K = 400/40=4, K, = 100,
K. 3.7. K >K>K,_. L is 3,
g, =2167T= Aw_=0.0725. a,=00350; the
coefficient g for diffcront centre frequency (see above) is
0.0, 0.3675, 0.7225, 1.0529, 1.3474. 1.5960 respectively.
On the Fig. 2 is illustrated magnitude response of the
filter bank for /. =3

?

Magnitude rasponse of the filter banks, [=3
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Fig.2 Magnitude response of the filter bank

6 CONCLUDING REMARKS

The design equations (9) - (11) strate the true
parametric tuning ability of the circuit. By cascading a
few such circuits, a complete parametrically adjustable
digital frequency responsed simple equalizer may be
realized. By comparison, the designs in [8-9] requirc
precomputing the multiplier coefficient values for all
designed equalizer settings. This does not represent a
tunable design, and as such has the drawback of requiring
excessive coefficient storage. In addition, such filters find
application in real-time signal ¢cnchancement/correction,
cochlea implant specch processor [10-11], et
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