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. (3)    Two problems associated with adaptive isotropic
quadratic filters are the computational complexity
and the speed of convergence.  This paper presents a
transform domain implementation scheme to solve
these problems.  A new implementation of the filter
using the Walsh-Hadamard transform (WHT) is
described.  A running WHT (RWHT) algorithm is
also proposed to reduce the computational cost.
Theoretical analysis shows that the number of
operations of the WHT implementation (using the
RWHT) is considerably less than that of the direct
implementation.  The advantage of using the WHT
implementation is illustrated by modelling a real
nonlinear system.  Results show that the WHT
implementation converges significantly faster than
the direct implementation.

    Owing to the complexity of the quadratic kernel,
research has been focused on the design and
implementation issues [2,3].  To reduce the
complexity of the quadratic filter the matrix B is
assumed to be a symmetric matrix, ie. b bj i i j, ,= .

The symmetric property permits fast implementation
schemes using a number of matrix decomposition
techniques [2], such as lower-upper triangular,
singular value, Jordan and Walsh-Hadamard
transform (WHT).  Alternatively, other techniques
such as multi-memory decomposition [4] and
reduced-rank decomposition [5] have been recently
proposed.
    To further reduce the complexity of the quadratic
filter, Rampoli [3] has recently introduced the
concept of isotropic quadratic kernel, which is also a
symmetric matrix.  The elements of an isotropic
kernel B have the relationship:

1. INTRODUCTION

    The second order Volterra filter, which is based
on the input-output relations expressed in the form of
a second order discrete Volterra series, has been
extensively studied and has been employed in system
identification, channel equalization, echo
cancellation and image processing [1-3].

b bi, j N i+1,N j+1= − − , i, j 1,2,..., N= . (4)

    As an example, the quadratic kernel of size (4x4)
is given below:
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    A second order Volterra filter mainly consists of a
linear part and a quadratic part described as follows:

y n h A B( ) = + +0 x x xT T , (1)

where y n( )  is the filter output, h0  is the constant to

make y n( )  an unbiased estimate, A Band are the

linear and quadratic kernels, respectively, and x  is

the input vector given by:

It is observed that the matrix is symmetric along the
two diagonal lines, and the independent kernel
elements are those in bold-face.  The number of
independent kernel elements for a matrix of size N
is:x = − − +[ ( ), ( ),..., ( )]x n x n x n N1 1 . (2)

The linear kernel is a (1xN) vector, and the quadratic
kernel is an (NxN) matrix, which is represented as:

( )N N2 2 4+ N even

( )( )N +1 2 2 N odd.



    In general, the number of operations required by a
direct implementation of a quadratic filter to process
one data sample is listed in Table 1.

It can easily be shown that x x x x'B BT = ' ' T .  This

new quadratic kernel can actually be decomposed
into four sub-matrices of the form:    Although the computational complexity of a

quadratic filter is reduced by using an isotropic
quadratic kernel, the amount of computation is still
very large for a real time adaptive system.  Since the
isotropic quadratic kernel has strong symmetric
properties, a natural way to further reduce the
computational costs is to perform linear
transformation on the kernel such that the resultant
kernel is a sparse matrix or contains a lot of zero
elements.
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where the size of the matrices B1 and B2 is half of
that of B'.  Although this property is derived from a
(4x4) kernel, one can prove that it is generally true
for any isotropic kernel of size N=2k.
    As a result, the transformed kernel is a block-
diagonal matrix

D WB Ww
T' '= =
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    In section 2, the implementations of the 1-D
isotropic quadratic filter using the Walsh Hadamard
transform (WHT) is briefly reviewed.  In Section 3,
a running WHT (RWHT) algorithm is proposed to
reduced the computational cost for performing the
WHT.  Using the RWHT algorithm the transform
coefficients are  updated recursively when the input
data is shifted.  In section 4, experimental results on
both simulated data and real data are presented.
Finally, conclusions are made in section 5.

where the variables α, β, θ, δ, τ and λ represent the
independent kernel elements.  Now the new
quadratic filter becomes:

( )y n Dq w w
T

( ) ' ' '= X X = X XD T . (12)

    An important issue is the computational
complexity.  The number of operations needed for
the WHT implementation have been calculated.  The
formulae are listed in Table 1, which shows that the
WHT implementation requires less multiplication
operations than that required for the direct
implementation.  The extra N Nlog2  addition

operations due to the computation of the fast WHT
(FWHT) can be reduced by using a running WHT
algorithm described below.

2. THE WHT IMPLEMENTATION [6]

    The WHT matrix, a ( )N N×  matrix

( , , , ...)N kk= =2 1 2 3 , is usually defined recursively
using a block-matrix decomposition as follows:

W1
1

2

1 1

1 1
=

−






(6a)
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. (6b) 3. A RUNNING WHT ALGORITHM

    Consider the case where N=4, ie
[ ]x2 = − − −x n x n x n x n( ), ( ), ( ), ( )1 2 3 .  Here the

subscript is used to indicate the number of elements
in a vector.  For example, notations x2 and x3
represent vectors of 4 and 8 elements, respectively.

Since W WT= , the superscript of WHT matrix "T"
has also been omitted in the following discussion.
The WHT of the input vector is represented by:

    In the following discussion, the WHT matrix is
denoted by W for simplicity.  It is easy to see that

y n W W W W Dq
T T

w( ) = = =x x x x X XB BT T T (7)

where X x= W T  is the WHT of the input vector and

D Bw
T

W W=  is the WHT of the quadratic kernel.

Without losing generality, a vector of four elements
is used in the following presentation.  If the input
vector is rearranged as: [ ]X = x2 2W2 = X X X X( ), ( ), ( ), ( )0 1 2 3 (13)

Let the WHT of the shifted vector
[ ]~ ( ), ( ), ( ), ( )x2 = + − −x n x n x n x n1 1 2  be represented

by:

x' = − − −[ ( ), ( ), ( ), ( )]x n x n x n x n1 3 2 , (8)
then the corresponding isotropic kernel B' is
represented by:

[ ]~ ~ ~
( ),

~
( ),

~
( ),

~
( )X = x2 2W2 = X X X X0 1 2 3 . (14)
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(9) It is easy to show that:
~

[ ]X X U2 22 = +R , (15)

where



[ ][ ]X =2 R X X X X( ), ( ), ( ), ( )0 1 3 2− − (16) The re-ordered vector [ ]Xk R  and the updating

vector Uk  can be obtained by following the above

method.  Thus, when the input signal shifts one
sample, it is not necessary to perform the WHT for
the new vector.  The WHT of the new vector can be
obtained by adding the updating vector to the re-
ordered version of the previous transformed vector.
In this paper, this method will be called the running
WHT (RWHT).

is a re-ordered vector of X2, U2 = [ , , , ]∆ ∆ ∆ ∆  is an

updating vector and
∆ = + − − +x n x n N( ) ( )1 1 . (17)
In the following, the superscripts 1 and 2 are used to
represent the first and second half of a vector

respectively.  For example, X X3
1

3
2  and  represent

the first and the second half of a vector X3 .

    Using the block matrix decomposition method,
one can easily derive the WHT transform equations
for vectors x x3 3  and  ~  (k=3, N=8):

    It has been proved that the number of addition
operations Tk  required by the RWHT is:

T T k and Tk
k

k= + ≥ =−
−2 2 3 52

1 2, (25)[ ]
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It has also been proved that the number of addition
operations required by the RWHT is less than that
required by FWHT, ie,

T N N k kk
k< = ≥log ,2 2 2 . (26)

A more interesting result is that ,

k Tk
k

k2
3

4
2− > , when k ≥ 3 . (27)and
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This means that the RWHT requires at least 
3

4
2k

less operations than FWHT.  The proofs of the above
results are given in [7].
    Table 1 summarises the number of operations
required for the direct and the WHT
implementations of an isotropic quadratic filter.

N k= 2  is the size of the data vector, p represents
the extra addition operation to calculate the WHT,
p N N= log2  for a FWHT and p Tk=  for a

RWHT.

Using equation 15, the updating equation for the first
half of the vector is given by:
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(20a)

Table 1 The number of operations required by
the direct and the WHT implementations

where [ ]X3
1

R  is the re-ordered version of X3
1  (in the

same way as equation 16), U   U3
1

3
2  and  are the

updating vectors.  Following the same method, the
updating equation for the second half of the vector is
given by:

Multiplications Additions
Direct
implementation N N( )

3

4
1+ 3 2 4

4

2N N+ −

WHT/RWHT
implementation

N
N

( )
2

1+ N
p

2

2
1+ −

~
[ ]X X U U3

2
3
2

3
1

3
2= + −R (20b)

A combination of equations (20a) and (20b) yields:
~

[ ]X X U3 3 3= +R . (21)
4. SIMULATION RESULTS

where
U3 = [ , , , , , , , ]∆ ∆ ∆ ∆ Σ Σ Σ Σ (22)     An adaptive second order Volterra filter (the size

of the quadratic filter kernel being (4x4) and the
linear kernel size being 4) is applied to a typical
nonlinear system modelling problem, which is shown
in Fig. 1.  In [6], it has been shown using simulated
data that the WHT implementation results in a
significantly faster convergence than the direct

and
Σ = + + − + − − +x n x n N x n N( ) ( ) * ( / )1 1 2 2 1 .(23)
Therefore, one can easily prove the following
general updating equation:
~

[ ]X X Uk k k= +R . (24)



implementation.  We have also performed
simulations using a real nonlinear system.  The
nonlinear system is simulated by a circuit whose
block diagram is shown in Fig.2.  The pseudo
random (PN) code generator is used to simulate the
baseband signal source.  The output of this nonlinear
system (distorted signal) together with the original
signal is sampled and processed using the standard
LMS algorithm [8].  Fig.3 shows that the distorted
signal has been successfully recovered.  This also
confirms our early study [6] on the performance of
adaptive quadratic filters.  Because the nonlinear
system shown in Fig. 3 is an approximation of a
nonlinear channel, the proposed technique is a useful
nonlinear channel Equalizer.

and the discrete cosine transform," Submitted to IEE
Proc. Vision, Image and Signal Processing.
[8] B. Widrow and S. D. Stearns, Adaptive
signal processing. Prentice-Hall, Inc. Englewoods
Cliffs, N. J. 1985.
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Fig. 1 Nonlinear system modelling using adaptive Volterra filter
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5. CONCLUSION

    We have proposed a running WHT algorithm
which requires less operations than the fast WHT.
We have also applied the RWHT to implement the
adaptive isotropic quadratic filter.  Our new
implementation has two advantages: (1) it requires
less operations than the direct implementation, (2) it
has better performance in modelling a nonlinear
system.  The RWHT can also be applied to adaptive
linear filters.

Low pass filter
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Multiplier

+
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�

�

Noise

White
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Fig.2  Block diagram of a circuit for nonlinear

system simulation
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