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ABSTRACT

The paper deals with the analytical performance of the
single�cycle detector� which is based on the cyclostation�
ary properties of the signal to be intercepted� The Re�
ceiver Operating Characteristics �ROC� are derived the�
oretically� in discrete time� by using the asymptotic com�
plex normality and covariance expressions of the sample
average estimator of the cyclic�covariance when some
�mixing conditions� are veri�ed� Performance analysis
of the single�cycle detector is evaluated for a cyclosta�
tionary signal observed in a background of stationary�
zero�mean� white Gaussian noise� A numerical example
for interception of a Binary�Phase�Shift�Keying �BPSK�
signal is considered�

� Introduction

Recently� cyclic detectors 	
� have been proposed in in�
terception problems� in order to exploit the spectral cor�
relation property of the cyclostationary signal of interest
�SOI� to be intercepted� This approach supposes knowl�
edge of a few characteristics of the SOI� such as the
modulation type �e�g�� hop rate� keying rate� etc��� The
optimum detector �Neyman�Pearson sense�� in a �weak
signal� assumption� is the multi�cycle �MC� detector�
which is derived from the Locally Optimum �LO� test
and the cyclostationary SOI model s�t��
However� appropriate implementation of the MC de�

tector requires knowledge of the SOI phases �e�g� carrier
phase and keying clock phase for PSK signals�� Hence�
in order to avoid the problem of unknown phases� a sub�
optimumstructure is used� referred to as the single�cycle
�SC� detector� employing only one cyclic frequency and
taking the magnitude of the statistic 	
��	��� In each
of these works the performance of the SC detector is
characterized using the analytic measure of deection
�by omitting the magnitude operation for tractability�
or using ROC obtained via simulation�
The purpose of this paper is to approach the exact

evaluation of the detection probability and of the false
alarm probability�
Conditional probability density function �pdf� of the

SC detector under null and alternative hypotheses is de�

rived by using results based on the asymptotic complex
normality �ACN� of the cyclic correlogram� which is a
consistent estimator of the cyclic covariance when some
�mixing conditions� are veri�ed 	��� Analytic expres�
sion of the performance of the SC detector in term of
the ROC is obtained and comparisons are made with
Monte Carlo simulations as a check on the validity of
the results�

� Single�Cycle detector

The detection problem is stated in terms of the following
binary hypothesis test�

H� � x�t� � n�t��
H� � x�t� � s�t� � n�t��

t � �� � � � � T � � ���

where n�t� is a zero�mean stationary WGN process and
s�t� is a zero�mean �weak� cyclostationary signal� which
is assumed to be noise�independent�

When the signal s�t� is modeled as cyclostationary�
the time�varying covariance of the discrete�time zero�
mean process� C�s�t� � � � E	s�t�s�t � � ��� can be ex�
pressed in a Fourier series as

C�s�t� � � �
X

��A�s
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�
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with A�s � f� � � � � � 
� and C�
�s�� � �� �g� ���

and the Fourier coe�cient C�
�s�� � is referred to as the

cyclic covariance of s�t� at the cycle frequency ��

The LO test and �
� lead to the MC statistic obtained
in 	
�� from which by selecting one cycle frequency and
taking the modulus to avoid SOI phases problem� the
discrete�time single�cycle detector statistic is given by

� � jZj �
�����
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where C�
�xT �� � is the cyclic correlogram of the received

data de�ned by

C�
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�
�
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t��
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� Performance analysis

Some mixing conditions �which intuitively imply that
samples of the process x�t� which are well sepa�
rated in time are independent� de�ned in 	�� as�
sure the mean�square sense consistency of C�

�xT �� � �i�e
limT��E	C�

�xT �� �� � C�
�x�� �� and the asymptotic com�

plex normality �ACN� of
p
T �C�

�xT �� � � C�
�x�� ��� with

covariance expressions given in ����� Proofs are given in
the appendix of 	���
From these results� the asymptotic distribution for the

real and imaginary part of the statistic Z � Zr�jZi �see
�� under H� �x�t� � n�t�� and H� �x�t� � s�t��n�t�� is
as follows�
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p
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���
where N stands for normal density and
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In ���� the asymptotic covariance expressions 	�� are
given by

lim
T��

TcovfC�
�xT �� �� C

�
�xT ���

�g � S�
�x�������

lim
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TcovfC�
�xT �� �� C

�
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�x ������ ����

where S��x�	���� is the cyclic spectrum of f�x�t� � �� de�
�ned by

S
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covff�x�t� ��� f�x�t� ����g
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where f�x�t� � � � x�t�x�t � � � is a real valued time
product�
From ���� and for T large enough� we may approx�

imately express the distribution of the real and imag�
inary part of the statistic Z � Zr � jZi under Hp

�p � �� �� as

Z�rji� � N �E�p 	Z�rji���
V�p 	Z�rji��

T
� � ��
�

�
Z�rji� denotes Zr �resp� Zi� the real part of Z �resp� imagi�

nary part of Z��

By using the consistency of the cyclic correlogram of
the received data of ���� conditional expected values of
Zr and Zi statistics under Hp can be expressed as

H� � E�� 	Z�rji�� � �

H� �

�
E�� 	Zr � �

PT��
���T�� jC�

�s�� �j�
E�� 	Zi� � �

����

Now� in order to have an analytic expression of variances
���� we need to evaluate the cyclic spectrum ����� Using
the superimposition of the two independent zero�mean
time�series �x�t� � s�t��n�t��� the cyclic spectrum ����
can be expressed as

S��x�	���� � S��n�	���� � S��s�	���� � S��sn�	���� �

S��ns�	���� � S�snns�	���� � S�nssn�	���� ����

where the general form of the cyclic cross�spectrum
S�abcd�w���� is de�ned by

S
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where fab�t� � � � a�t�b�t�� � and fcd�t� � � � c�t�d�t�� �
are real�valued time products� Cyclic�spectra in ����
correspond to the general form S�abcd�	���� by substi�
tuting subscripts a� b� c� d for the correct SOI and noise
subscripts s and n�
The cyclic spectrum of the time noise product

f�n�t� � � can be easily expressed as
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�
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�
� otherwise

����
is the Kronecker delta train�
The cyclic cross�spectra of the di�erent time signal

and noise products can be expressed as
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Finally� the cyclic spectrum of the time signal product
f�s�t� � � can be expressed as

S
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where C�
�s���� ��� �	� is the �th�order cyclic cumulant of

the cyclostationary SOI de�ned in similar fashion as ����



Variances V �� �Z�rji�� under H� can now be evaluated
to a closed form� substitution of ���� into ���� yields

V�� �Zr� � V�� �Zi� � 
�n

T��X
���T��

jC�
�s�� �j�� �
��

Variances V �� �Z�rji�� under H� are evaluated by sub�
stitution of ���� into ����
Notice that� under H�� cyclic spectra for  � 
�

can be identically zero �see ������

�� and the princi�
pal cyclic spectrum related to the noise only� ���� is
identically zero� Hence� from ��� we can approximate
conditional variances under H� as

V�� 	Zr � � V�� 	Zi� �
�
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This approximation leads us to well�known distribu�
tions� when the magnitude � � jZr � jZij is taken �

� under H�� the SC statistic follows a Rayleigh distri�
bution and the corresponding analytical threshold
T�sc� for a �xed false alarm probability Pfa can be
evaluated by

T �
�sc� � �
�n

T

T��X
���T��

jC�
�s�� �j� ln�Pfa� � �
��

� under H�� the SC statistic follows a Rice distribu�
tion and the corresponding detection probability is

P
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T

�
T�sc�q
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T
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�
��
where Q�a� b� is the Marcum function� An e�cient
algorithm of Marcum�s Q function can be found in
	���

� An example � the ROC for BPSK signal

In order to form the ROC for the BPSK signal from the
theoretical assessment in Sec��� we need to evaluate the
cyclic covariance and the fourth�order cyclic cumulant
of a discrete BPSK time�series	�

��� Second and fourth cyclic cumulant of a

BPSK discrete�time series

Using the sampling frequency as an integer multiple of
the baud rate of a continuous BPSK signal� the discrete�
time BPSK signal s�t� can be expressed as�

s�t� � y�t�z�t� �t 	Z� �
��

y�t� �
�X

m���

amp�t�mTc � t�� �
��

z�t� � Ascos�	�t � �� � �
��

�principal because of the �weak� signal assumption�
	Notice that the fourth order cyclic cumulant of the cyclosta�

tionary SOI appears only in �����

where Tc corresponds to the number of points per keying
interval� 	� is the reduced carrier pulsation� t� is the nor�
malized keying clock phase� famg is an independent and
identically distributed symbol sequence equal to ��� �
and p�t� is the rectangular pulse such that p�t� � � for
t � �� � � � � Tc � � and � otherwise�
The PAM process y�t� checks some �mixing condi�

tions�� so sample averages of a product of the PAM
process converge with probability � to the time�average
expectation of the product� This allows us to use the
non�probabilistic results 	�� about cyclic cumulant for�
mulas for PAM time�series�
The nth� order �n�
 or �� cyclic cumulant of the dis�

crete PAM signal de�ned in �
�� can be obtained from
the discrete�time counterpart of cyclic cumulant formu�
las for PAM time�series in 	��� and we can achieve the
following closed�form expression
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where a � �minf�� �g� b � Tc � � �maxf�� �g and if

a � b then C�
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We can easily compute the 
nd and �th�order cyclic
autocorrelation of the non random modulation z�t� with
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Finally� the cumulant of the product of an almost pe�
riodic deterministic modulated signal z�t� by a cyclosta�
tionary process y�t� is given by�

C�
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X
��Any
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ny�� �R

���
nz �� � � ����

where Any � fk��
Tc

� k � f�� � � � � Tc � �gg�
�Note that� the discrete PAM signal ���� has the same set of

cycle frequency Any for n 	 � or n 	 
�
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Figure �� ROC SC� T � �	�
 and T � ���

��� In�uence of the BPSK parameters on a cor�

rect implementation of the SC detector

Before to implement the SC statistic via computer sim�
ulations� we emphasize that the SOI parameters have a
crucial impact on achieving e�ective implementation of
the SC detector� In fact� to avoid unknown SOI phases
�i�e� carrier phase � and the keying clock phase t��� the
solution which consists in choosing one cycle frequency�
and then taking the magnitude of the statistic doesn�t
always hold for the discretized BPSK signal model �
���
According to the computation of the discrete cyclic co�
variance of a BPSK signal �see previous subsection�� the
summation ���� can be performed over several cycle fre�
quencies �� This way� we see a sum of terms such as
e�j�	 or ej�t� or ej��t���	�� If there�s only one term� this
term could be eliminated when the modulus operation
is performed to form the SC statistic� However� if there
are several terms� the modulus operation cannot remove
these terms� and this can give rise to destructive inter�
ference� To avoid this problem� the SC detector must
be implemented such that 	�Tc and 
	�Tc aren�t integer
multiples of � �

��� Numerical results

Comparisons of analytical results with computer simu�
lations �see ���� for the ROC are presented for one value
of the signal�to�noise�ratio �SNR� de�ned in the signal
bandwidth as

SNR
�
� �� log

Tc

�
s

�
�n
� ��dB � ����

Parameters of the BPSK signal are� reduced pulsation
	� � 
�f� � 
� � ��
�� keying interval Tc � � �four
points per keying interval��
The ROC for the SC detector are evaluated for the

selected cycle frequencies �
�� � 
f�� ��Tc� 
f� � ��Tc

and �
f� � 
�Tc�
Figs� � and 
 plot the ROC for the each considerate

cycle frequency and di�erent sample size T �solid lines
correspond to the theoretical results and dashed lines to
the simulated results�� Simulation results are based on
a sample population of ����� Performance of the SC de�
tector are symbolically ordered for each cycle frequency
as � SC� �

�� � 
f�� � SC� �
�� � ��Tc� � SC� �

�� � 
f� �
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Figure 
� ROC SC� T � ��� and T � ���
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��Tc� � SC� �
�� � 
f��
�Tc�� We note that for T � �
�

we have SC� �
�� � 
f� � ��Tc� � SC� �

�� � 
f� � 
�Tc��
These results con�rm the good agreement between the�
oretical and simulated results for each sample time�
Fig� � plots i� theoretical probability of detection ver�

sus the estimated probability of detection and ii� the�
oretical probability of false alarms versus false alarms
rate� We observe a good agreement between theoretical
and estimated results� However� we note that we don�t
exactly have straight line from �e�� to �e��� as expected�
This can rise because the number of false alarms is very
small for a ����� sample population �for Pfa � �e�
��

References

�� A�V� Dandawat�e and G� B� Giannakis� Statistical Tests
for Presence of Cyclostationarity� IEEE Trans� Com�

mun�� 
��������������� September ���
�

�� W�A� Gardner� Signal Interception� A Unifying Theo�
retical Framework For Feature Detection� IEEE Trans�

Commun�� ��������	�� August �����

�� W�A� Gardner and C�M� Spooner� Signal Interception�
Performance Advantages of Cyclic Feature Detectors�
IEEE Trans� Commun�� 
	�����
������ January �����


� Steen Parl� A New Method of Calculating the Gener�
alized Q Function� IEEE Trans� Information Theory�
������������
� january ���	�

�� C�M� Spooner and W�A� Gardner� The Cumulant The�
ory of Cyclostationary Time�Series� Part II� Develop�
ment and Applications� IEEE Trans� Signal Processing�

����������� December ���
�


