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ABSTRACT

It is often assumed that blind separation of dynamically
mixed sources can not be accomplished with second or-
der statistics. In this paper it is shown that separation
of dynamically mixed sources indeed can be performed
using second order statistics only. Two approaches to
achieve this separation are presented. The first ap-
proach is to use a new criterion, based on second or-
der statistics. The criterion is used in order to derive a
gradient based separation algorithm as well as a mod-
ified Newton separation algorithm. The uniqueness of
the solution representing separation is also investigated.
The other approach is to use System Identification. In
this context system identifiability results are presented.
Simulations using both the criterion based approach and
a Recursive Prediction Error Method are also presented.

1 INTRODUCTION

Source separation algorithms has become a well estab-
lished research area in the signal processing community.
Several papers concerned with this topic have been pub-
lished, cf [3, 2, 9]. However, there are few papers con-
cerned with source separation for dynamic channels us-
ing second order statistics cf. [9, 8, 10]. In the present
paper two different methods for source separation using
second order statistics are described. The first algo-
rithm is based on a criterion, which makes it possible to
derive an algorithm in an analytic manner. The second
method solves the source separation problem by consid-
ering it as a system identification problem which can be
solved with, for example, a Recursive Prediction Error
Method (RPEM).

2 PROBLEM FORMULATION

In figure 1 a cross-mixture scenario is depicted. Two
white signals & (n) and & (n) are used as source gener-
ating signals. These signals are convolved with two lin-
ear filters and the outputs are z1(n) and z5(n), referred
to as the source signals. The following assumptions are
introduced
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Figure 1: Source generation and channel system.

C1: & (n) and &> (n) are realizations of mutually uncor-
related identically distributed sequences with non
zero variance and zero mean.

C2: The filters G1(¢™")/Fi(¢™") and Go(¢7 ")/ Fa(¢7")
are asymptotically stable.

The source signals are unmeasurable and inputs to a
system, referred to as the channel system. The chan-
nel system produces two outputs y;(n) and y2(n) which
are measurable and referred to as the observables. The
objective is to extract the sources from the observables.

3 CRITERION BASED APPROACH

The algorithm to be presented in this section is based on
the assumption that the channel system consists of finite
impulse response (FIR) filters. The model for one pos-
sible separation structure is depicted in figure 2. This
structure is referred to as the feed-forward separation
structure. The inputs to the feed-forward separation
structure are the observable signals. The output from
the separation structure, s (n) and s2(n), depend on the
two adaptive FIR-filters, D; and D, and can be written
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Figure 2: Source generation, channel system and sepa-
ration structure.

where 0 = [dl,o ]T =
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[ dJ] . In order to extract the sources from the

observables the parameter vector § must equal the true

parameter vector 8y = [c1,0 - -C2,L— 1]T =
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This is only poss1ble if the natural assump-

C3: P<Uand LW

is introduced. The assumption C3 is reassuring that
the channel system can be modeled by the feed-forward
separation structure.

Several algorithms found in the literature are not based
on any criterion minimization which leads to a combi-
natorial explosion of possible algorithms. A detailed
treatment of the combinatorial problem can be found
in [4]. The combinatorial explosion can be eliminated
by using the following criterion

M

V(O)= Y (Rsss(l,6)), (2)

l=—M

where R, s, is the cross-correlation of the signals s; and
so. If the true parameter vector, g is inserted in the
criterion function then V' (6p) = 0. The cross-correlation
Ry, s, (4,0) is, under assumption C1 and C2, given by

Rsiso(l) = Ry,y(l) — dQTryzyz (1) - d{ryun (1)
+ngy2y1 (l)d17 (3)
where
Tyuyy (1) =[Ryyya () - Rypyy 1+ W — 1)] (4)
Tyoys (1) =[Rysys (1) -+ Rypys (1 = U + 1)]7 (5)
yzyl (l) :[ryzzh l) e ryzy1 (l+W—1)] ) (6)
Tyoys (1) =[Ryoys (1) -+ Rypyy 1 = U + 1)]T (7)

The gradient, VV = 9V/06, can now be calculated
as

M
ORg, 5, (1,0
Vo)=Y 2%

l=—M

(Rsys,(1,0)) . (8)

This gradient in conjunction with a stochastic gradi-
ent type of algorithm exhibits slow convergence when
the source signals are similar. To increase the speed
of convergence a Newton algorithm can be derived. The
Newton algorithm uses the Hessian matrix of V' in order
to recalculate the gradient used in equation (8). How-
ever, the Hessian matrix is in general not positive defi-
nite. If the Hessian matrix is indefinite then the search
in some directions can be the opposite to the expected
search direction. To eliminate this uncertainty a modi-
fied Hessian matrix is used, defined by

M
=2 Y PQ, (9)
=M
where
R 5 (1) (aRw(z))T ORqy 05 (1) (aRw(z))T
ORy on(l) (ORs on(D)\ T  ORayan() (ORay,(D\T
5ds ( ad; ) 5ds ( ods )

The modified damped Newton algorithm is
6(n) = B(n—1) — p(n)EH " (n,6(n—1)).  (10)

3.1 Parameter identifiability and convergence

The issue of parameter identifiability (PI) has been in-
vestigated, cf [5]. In brief, for causal channels, the prob-
lem is parameter identifiable using second order statis-
tics if the channel system contains at least one root in
each channel and 1 — C;Cs is minimum phase. How-
ever, it might be possible to relax the conditions on the
algorithm in [5].

Investigation of the convergence properties of the al-
gorithm given in equation (10) has been conducted. For
source signals with F} = F, = 1 it turns out that a nec-
essary and sufficient condition for convergence is that it
is not simultaneously true that 1 — C C5 is linear phase
and that the sources have identical color, cf [6].

4 SYSTEM IDENTIFICATION APPROACH

The system identification problem can be stated as the
problem of estimating all polynomials in figure 1. Note
that the source separation problem requires only the
identification of the channel so that the source signals z
and z2 can be recovered.The channel filters are assumed
to be ARMA filters with
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where GG, G2 etc. are polynomials in the unit delay
operator z, and the signals y;, y» etc. are functions
of the discrete time variable t = 1,2,... (To simplify
notation we omit the dependence on z and ¢ whenever
possible). Without any restriction A;, Ay, Fy and F
are assumed to be monic and G; and G5 are assumed
to be minimum phase.

4.1 System Identifiability

This section deals with the parameter identifiability of
the system presented in equation (12), using second-
order statistics only. The following assumption is intro-
duced.

C4: No cancelations occur either in the elements of the
spectral matrix W = E [yy] or in its determi-
nant.

Proposition 1 Under assumption C4, the system given
by equation (12) is PI if the filters of both the channels
have more poles than zeros.

Proposition 2 Under assumption C4, the system given
by equation (12) is PI if the sources are purely autore-
gressive, both filters of the channel have at least one zero,
and the filter A1 As — B1 By is minimum phase and of
degree larger than those of By and Bs.

Proposition 3 The system given by equation (12), with
a static channel, is locally parameter identifiable (LPI)
with exactly two solutions if the sources are colored dif-
ferently, i.e. G1/Fy is not proportional to G5 /F> and
the product of the channel gains differs from unity.

Proposition 4 In the case of G1/F\ proportional to
G2/ F> and static channels the system given by equa-
tion (12) is not even locally identifiable.

Proofs Can be found in [1]. O

A previous article on PI for the source separation
problem has been published in [7]. In that paper LPI
is shown using second order statistics and accepting a
channel flop, but only for static channels. Those results
are covered by Proposition 3 of the current paper.

5 SIMULATIONS

5.1 The Criterion based algorithm

According to assumptions C1 and C2 the source signals
z1(n) and z2(n) can be generated by filtering two mutu-
ally uncorrelated sequences through two autoregressive
filters. One filter has a complex pole pair at radius 0.8
and angle 7/4. The other filter has a radius of 0.8 and
variable angle from 0 to 7. The channel system consists
of two filters D; = 0.3+ 0.1¢" ! and Dy = 0.1+ 0.7¢*.
The auto and cross correlations of y; and ys have been
estimated prior to minimization of the criterion. These
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Figure 3: The standard deviation and mean value as
function of the relative angle between the poles of the
source filters.

estimates are based on a realization size of N = 500,
1000, 2000, and 4000 samples. For each source filter
pair and realization size, N, a standard deviation and a
mean value have been calculated based on 100 realiza-
tions. The criterion minimizes only the cross-correlation
lags from —2 to 2. From figure 3 it can be seen that the
variance is reduced with increasing number of samples.
The simulation also reveals the narrow band where sep-
aration is “hard”. This band corresponds to sources of
similar, or even identical color. Note that only the pa-
rameter d; o is presented in figure 3. However, the other
parameters have a similar behavior.

The second simulation illustrates the convergence be-
havior. Three cases are used, these are summarized in
table 1. In all three cases G; and G, are unity. For

Case F F roots(1 — C1C)
1. 08£4£+rw/4| 0.84+t7/4 0.5 and 3
2. 084+tnw/4 | 084+7/4 0.5 and 2
3. 084 +nw/4 | 084 +3r/4 0.5 and 2

Table 1: The settings for simulation two

each case 100 realizations, of size N = 16000, have been
run and the resulting parameter standard deviation have
been summarized in table 2. Note that case one corre-

Prop. Case 1 | Case 2 | Case 3
10 0.187 | 0.041 0.006
€11 0.683 | 2.187 | 0.006
dio 0.175 | 0.041 0.005
dyq 0.698 | 2.157 | 0.005

cond(H) 700 10%¢ 80

Table 2: The standard deviation of the estimated param-
eters and the condition number of the modified Hessian.

sponds to 1 — C1C> being mix-phase whereas case two



and three corresponds to linear-phase. Note that the
condition number for case 2 is very high. The interest-
ing thing is that the convergence property, in section 3.1,
holds even if Fi = F5 # 1. However, for the general case
this remains to be proven.

5.2 Simulations using RPEM

In this section we present simulation results to illus-
trate the theory of section 4. From the class of avail-
able parameter estimation methods we choose the re-
cursive prediction error method (RPEM). A description
of how this method can be applied to the source sep-
aration problem can be found in [1]. Recursive signal
separation with ARMA-channel filters based on a crite-
rion employing only second order statistics is believed
to be novel. Figure 4 presents both estimated parame-
ters and root mean square (rms) values of the difference
between the true and the estimated source signals.
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Figure 4: Parameter estimates and normalized rms val-
ues. The true parameter values dotted.

The system used in this section is PI according to
Proposition 1. The filter By/A; contains more poles
than zeros while By/As has equally many in this exam-
ple.

In the RPEM algorithm both the source filters and the

channel were modeled by using the true number of pa-
rameters.
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