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ABSTRACT

This paper develops an adaptive equaliser which utilises
the Kalman filtering to reconstruct the transmitted
sequence in time variant environments. The adap-
tive Kalman equaliser(AKE) addressed by Mulgrew and
Cowan is modified by adopting a channel estimator, co-
efficients of which are updated by a gradient algorithm
with fading memory prediction. By computer simula-
tions, the performance of the AKE is investigated, and
shown to be superior to that of the decision feedback
equaliser(DFE) involving the adaptation of recursive
least squares(RLS) algorithm in the case of a second
order Markov communication channel model.

1 INTRODUCTION

There have been a number of attempts to tackle the
problem of equalisation of time variant communications
channels. The least mean square(LMS) and recursive
least squares(RLS) algorithms are commonly used as the
adaptation procedure for the equalisers.

Multipath channels containing the characteristics of
time variation often causes channel output spectral
nulls, leading to severe intersymbol interference which
means ill-conditioning to any adaptive equaliser. This
is typical on high-frequency(HF) channels and mobile
radio channels. To handle such spectral nulls, a de-
cision feedback equaliser(DFE) is preferred to a linear
equaliser, because the DFE operates on a noise-free out-
put from the decision circuit. In [1]-[3] it has been pro-
posed that the RLS algorithm based on the structure of
the DFE should be used to equalise time variant chan-
nels. However, the DFE has an inherent problem asso-
ciated with the error propagation.

On the other hand, it has been shown that the
adaptive Kalman equaliser(AKE) addressed by Mulgrew
and Cowan[7] provides good performance in the HF
channel[6]. In the AKE, the separation of the state and
channel estimation processes is attempted. The struc-
ture of the AKE is basically that of a linear infinite im-
pulse response filter, and thus involves a feedback path
like the DFE. However, the AKE, unlike the DFE, does
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not suffer from error propagation, because it does not
utilise previous decisions to obtain the equaliser output.

This paper modifies the AKE by Mulgrew and
Cowan[7] to suit time variant environments. To deal
with rapid time variation, a gradient algorithm with
fading memory prediction is adopted as the adaptation
procedure of the channel estimator. We demonstrate
the performance of the AKE by computer simulations,
in comparison with that of the conventional RLS DFE.
The results show how the AKE is robust against channel
fade rate and against additive noise.

2 CHANNEL MODEL

We assume that the channel is modeled as a discrete-
time finite impulse response filter, the output of which
is corrupted by additive noise. Thus if ug is the trans-
mitted sequence, assumed to have zero mean and unit
variance, the output of the channel is a noise-corrupted
sequence zj given by

L-1
T = Z hi(k)uk_i + ng (1)
=0

where ho(k), h1(k),,,,hr—1(k) is the channel impulse
response and ny is a stationary sequence of Gaussian
noise with zero mean and variance o2, which is assumed
uncorrelated with ug.

3 STRUCTURE AND ADAPTATION

The AKE basically consists of double adaptation pro-
cesses; one is the channel estimation and the other is
the Kalman filtering. The channel estimation process
requires the estimate of the variance of the additive noise
as well as the estimate of the channel coefficients. The
original AKE involves a channel estimator, coefficients
of which are updated by the LMS algorithm. How-
ever, here, the LMS algorithm is replaced by the gradi-
ent algorithm with degree-1 least square fading memory
prediction[4].

3.1 Channel Estimation

Figure 1 shows a configuration of the modified AKE
in the training mode where it is assumed that exact
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Figure 1: Configuration of the adaptive Kalman equaliser in the training mode.

knowledge of the training sequence is obtained at the
receiver side. Suppose that the channel estimator has
N adjustable tap coefficients represented by the vector
g(k) = (go(k), 91(k),,,,gn—1(k))T, and the output of
the channel estimator is the sequence z; given by

ZEp = 2_: gi(k)uk_i. (2)

Then the gradient algorithm is given by the following
equations:

3

er = Tk — 2 (3)
f(k+ 1) = g(k) + pu(k)ex (4)
E(k) =f(k+1) —g(k) (5)
a(k+ 1) = a(k) + (1 — 6)*E(k) (6)
glk+1)=g(k)+alk+1)+ (1 -6°)Ek) (7)

where p is the step-size parameter and u(k) is the input
vector given by u(k) = (uk,Uk_1,,,,uk—n+1)7. £(k),
E(k) and (k) are N component row vectors, and 6 is
a real-valued constant in the range 0 to 1. This channel
estimator, at each iteration, gives an estimate of the im-
pulse response of the channel. The gradient algorithm
(2)-(7) is known to be more cost-effective than the cor-
responding RLS-type algorithm[5].

For the purpose of estimating the variance of the ad-
ditive noise, we use the following operation:

o2(k) = (1 — 1/N)o?(k — 1) + (ex—i)>/N,  (8)

because this operation compensates the Kalman filter
for the uncertainty in the channel impulse response
vector[7].

3.2 Kalman Filtering

Based on the results from the estimates of the impulse
response of the channel and the variance of the addi-
tive noise, the following Kalman filter is implemented
to obtain the equaliser output.

s(k/k — 1) = ®8(k — 1/k — 1) (9)

(k/k) =8(k/k— 1)+ K(k)[zr — H(k)s(k/k—1)] (10
Vik/k—1)=®V(k—1/k—1)®T + T (11

V(k/k)=T1-K(k)HK)]V(k/E-1)  (
where s(k) represents the state vector given by
ST(k) = [U'kufk—1---UIk—N-|-1---U'k—d], (14)

and §(k/l) means the estimate of s(&) given data from 0
tosample . ®is a (d+ 1) by (d+ 1) shift matrix whose
elements ¢;; are equal to unity if i — j = 1 and are zero
otherwise, and ¢ is a vector with (d + 1) elements

¢ =[100...0]. (15)

Also, K (k) is the (d + 1) elements Kalman gain vector,
H(k) is the 1 by (d + 1) observation vector given by

H(k) = [ho(k), ha(k), ..., har—1(k), 0,0, ..,0],  (16)

and V(k/k) is the (d + 1) by (d + 1) error covariance
matrix. Replacing h;(k) in (16) by g;(k) in (4) and
substituting (8) in (12), we can obtain at each iteration
the equaliser output, ug_gq, from the state vector s(k).



Equations (2)-(13) give the whole algorithm of the AKE
for the training mode.

In the tracking mode, the equaliser output ug_g4 is
used as the input to the channel estimator, and, to pro-
duce correct estimates, z; delayed by d, zx_4, is used
as the channel output instead of zg.

4 SIMULATION RESULTS

Computer simulations were carried out to verify the per-
formance of the AKE. A comparison was also made with
the RLS DFE which is a DFE involving the adaptation
of the Godard RLS algorithm. The channel used in our
simulations consists of 3 taps and is given by

H(z) = ho(k) + ha(k)z~ + ha(k)z=2.  (17)

The time variant coefficients, ho(k), h1(k) and hy(k),
were generated by passing a Gaussian white noise
through a second order Butterworth filter which was
designed with sampling rate of 2400 sample/s. The in-
put of the channel was a pseudo-random sequence with
values of +1 or —1. In these simulations the channel
fade rate can be quoted as the 3dB bandwidth for the
Markov process. Figure 2 shows an example of coeffi-
cient trajectory of this channel model with a fade rate
of 2 Hz.
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Figure 2: An example of coefficient trajectory. The Taps
1-3 correspond to ho(k), k1(k) and ha(k), respectively.

Figures 3 is the convergence for channel fade rates of
2 Hz and 10 Hz where the RLS DFE and the AKE are
compared in the case of -50 dB additive noise. The
equalisers have the same filter order My = 14 and
My = 2 for the RLS DFE and d = 16 for the AKE, where
M; and Mj denote the feedforward and feedback filter
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Figure 3: Convergence of the AKE and the RLS DFE.
Solid and dotted lines correspond to the former and the
latter, respectively. The fd denotes fade rate in Hz.

orders, respectively. (This means that both equalisers
have about the same computational complexity which
is proportional to the squares of the number of coeffi-
cients to be updated at each iteration.) The parame-
ters for both equalisers have been optimised to give the
best performance. For the purpose of investigating the
equalisation performance against various time variant
characteristics, Figure 3 has been evaluated by averag-
ing 100 individual trials. From Figure 3 we see that as
the fade rate increases, the steady state properties of the
RLS DFE drastically degrade, while those of the AKE
are comparatively robust. Looking carefully at Figure
3, we also see that the convergence curve of the RLS
DFE has some spikes in the steady state, especially for
the fade rate of 2 Hz. This may be a visualisation of
the phenomenon of the error propagation invoked by
the structure of the DFE. Figure 3 also shows that the
AKE provides competitive or faster convergence.

Figure 4 is an illustration of the probability of error of
both equalisers on the channel with fade rates ranging
0.5 to 5 Hz. The signal-to-noise(SN) ratio is 30 dB. Fig-
ure 4 shows that the AKE provides better performance
than the RLS DFE for a wide range of fade rates. The
AKE behaves robustly at high fade rates which are more
than 2 Hz. This result is coincident with that of Figure
3.

Figure 5 illustrates the probability of error on the
channel where the additive noise predominates. The
fate rate is 2 Hz. This figure demonstrates the toler-
ance of the equalisers to the additive noise. Figure 5
shows that the AKE provides an improvement related
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Figure 4: Bit error rate performance against channel
fade rates for a signal-to-noise ratio of 30 dB.
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Figure 5: Bit error rate performance against additive
noise for a fade rate of 2 Hz.

to the RLS DFE when the additive noise is low as well as
when 1t is high. This is a surprising result, because the
DFE feeds back a noise-free output and does not have
noise enhancement unlike the AKE. From Figure 5, we
deduce that regardless of the SN ratio time variation in-
vokes catastrophic propagation of the decision error and
degrades the performance of the DFE, while the AKE
retains better performance despite the feedback of the
noise-corrupted output.

5 CONCLUSIONS

From the point of view of time variant channel equali-
sation, Kalman filtering has been investigated and an
adaptive Kalman equaliser has been developed. By
adopting a channel estimator, coefficients of which are
updated by the gradient algorithm with fading memory
prediction, the AKE by Mulgrew and Cowan has been
modified to suit time variant environments. Computer
simulations have demonstrated that the AKE provides a
significant improvement related to the RLS DFE in the
case of a second order Markov communication channel
model.
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