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ABSTRACT

In this paper, we present a new linear modulation
classification method based on a fourth-order cu-
mulant of the stationary signal. Under some hypo-
thesis, this method can be applied to carrier-modu-
lated or baseband signals and doesn't need the
knowledge of the signal to noise ratio. An example
of classification is given for 4 PSK vs. 16 QAM mo-
dulations. Theoretical performance are approxima-
ted and compared to simulation results. The sys-
tem achieves more than 90 % of correct classifica-
tion for only 500 transmitted symbols and a signal
to noise ratio of 0 dB.

1 INTRODUCTION

Automatic classification of modulations is a chal-
lenging problem that has been investigated for se-
veral years. We find two different approaches ap-
plied to linear modulations. In a pattern recogni-
tion approach, classification is achieved by mean of
extracted features like phase, frequency or ampli-
tude of the signals whereas in a log likelihood ap-
proach, the log likelihood function of the signal (or
some of its parameters) is processed and compared
to an appropriated threshold. In both cases, it can
be noted that many proposed systems use expli-
citly or not some fourth order statistics as discrimi-
nating parameters [1-4].
In this paper, we are interested in a N PSK, N=2n,
n>1 (N state Phase Keying) and M QAM, M=4m,
m>1 (M states Quadrature Amplitude) modulation
recognition task. It is well known that these modu-
lations have identical stationary or cyclostationary
statistics of order two so they cannot be discrimi-
nated. We derived here some relations which show
that classification of N PSK vs. M QAM or M1 QAM
vs. M2 QAM (    M M1 2≠ ) can be theoretically achie-
ved using a fourth-order cumulant of the baseband
stationary signal. For these modulations, the dis-
criminating feature are not proportional so that a
matched filter (maximum likelihood) approach can
be used and, unlike in [3,4], no threshold adjusting

will be needed. An application is presented for the
classification of 4 PSK vs. 16 QAM modulations.
The paper is composed as follows. In Part 2, we
derive the fourth-order cumulant expressions of the
carrier-modulated and baseband signals. In
Part 3, we give the principle of the classification
method and provide a solution to obtain a time ef-
ficient system. The theoretical performance of the
developed 4 PSK vs. 16 QAM classification system
are approximated in Part 4 and compared to simu-
lation results in Part 5.

2 SIGNALS AND FOURTH-ORDER CUMU-
LANT

2.1 Carrier-modulated and baseband signals

Although the numerical modulated signals are cy-
clostationary, we consider here their stationary
description. The N PSK or M QAM modulated si-
gnal     xc(t)  transmitted on a carrier frequency     f0

can be expressed (we omit in all the paper to write
the random variable needed for the stationarity of
the process) as

    
x t x t i f tc( ) ( ) )= +[ ]Re exp(2 0 0π φ (1)

where   φ0  is a fixed phase and x(t) is the complex-
valued baseband signal given by

    
x(t) = ckh(t − kT

k=−∞

∞

∑ ) (2)

where T is the symbol period, 
    
h(t) = 1I −T 2,T 2[ ]  and

    {ck = ak + ibk }  is an independant and identically
distributed symbol sequence. The symbols are de-
fined by     ( , ) (cos ,sin )a bk k k k= θ θ ,     θ πk j N= +( ) /2 1 ,
j=0,N-1 for N PSK modulations and by

    ak,bk = ±1,±3,L,±(2
m
− 1) for M QAM modulations.

Let us define

    

C

x t x t x t

x t x t

x p q p
xmod

p q

p

p p q

, ,

* *

( ,..., )

Cum ( ), ( ),..., ( ),

( ),..., ( )

+ + −

−

+ −

=

+ +(
+ + )

τ τ

τ τ

τ τ

1 1

1 1

1 (3)



the cumulant of order (p+q) of a xmod modulated
signal x(t) (xmod = N PSK or M QAM). Then, the
fourth-order cumulant     Cxc ,4,0

xmod (τ1,τ2,τ3 )  of the carrier-
modulated signal can be expressed, according to
(1), by:
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We see that the cumulant     Cx
xmod
, , ( , , )4 2 1 2 3τ τ τ  of the

baseband signal appears in (4). Then, we can say
that all signal processing systems based on

    Cx
xmod
, , ( , , )4 2 1 2 3τ τ τ  may be extrapolated to carrier-mo-

dulated signals if the carrier frequency is known.
We choose in the sequel to work on the baseband
signal.
2.2 Cumulant of the complex-valued base-

band signals

We can show that the cumulant     Cx
xmod
, , ( , , )4 2 1 2 3τ τ τ  of

the baseband signal (2) can be written
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where

    
Ch (τ1,τ2,τ3 ) = h(u)h(u+ τ1)h(u+ τ2 )h(u+ τ3 )du

−∞

∞

∫
and     γ 2 = IE[ak

2 ] ,     γ 4 = IE[ak
4 ]  and     ψ 4 = IE[ak

2bk
2 ]. For

signals of equal power P,     ∀ M , N  and     M1 < M 2,we
have the following relations:

    γ 2
N PSK = γ

2
M QAM

    (γ 4 +ψ 4 )N PSK = cte

    (γ 4 +ψ 4 )N PSK < (γ 4 +ψ 4 )M QAM

    (γ 4 +ψ 4 )M1 QAM < (γ 4 +ψ 4 )M2QAM

.
Cumulants (5) for N PSK,     M1 QAM and     M 2 QAM
modulations are therefore different. Moreover, we
can show that, under some conditions on the pulse
shape h(t) (cf. Appendix), they are not proportional.
The cumulant     Cx

xmod
, , ( , , )4 2 1 2 3τ τ τ  is then a discrimi-

nant pattern and modulation recognition using a

matched filter framework will avoid the knowledge
of the signal to noise ratio. We present in the follo-
wing the system we set up for the classification of a
4 PSK vs. 16 QAM modulations with equal symbol
period. For these modulations we have

    γ 2
16QAM = γ

2
4PSK = P / 2,      (γ 4 +ψ 4 )4PSK = P 2 / 2 and

    (γ 4 +ψ 4 )16QAM = 66P 2 /100.

3 DESCRIPTION OF THE SYSTEM
3.1 The correlator

The proposed system can be described as in fi-
gure 1.

Estimation of
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Fig.1: The 4 PSK vs. 16 QAM classification system

We first estimate the cumulant of the received
xmod modulated signal. Then we compute the
cross-correlations     ρ / xmod

tmod  between the estimated
cumulant     

˜ ( , , ), ,Cx
xmod

4 2 1 2 3τ τ τ  and the two theoretical
normalised cumulants     Cx

tmod
N, , ( , , )4 2 1 2 3τ τ τ  where

    tmod ∈{ }4 16PSK QAM, . The strongest correlation
measure provides the recognised modulation.
The cross-correlation is expressed as:

    
ρ/xmod

tmod
= C̃x,4,2

xmod
(τ1,τ2,τ3).Cx,4,2

tmod
(τ1,τ2,τ3)N

τ1,τ2,τ3

∑ (6)

and the normalised cumulants are defined by:

    

Cx,4,2
tmod(τ1,τ2,τ3 )N =

Cx,4,2
tmod(τ1,τ2,τ3 )

Cx,4,2
tmod(τ1,τ2,τ3 )( )2

τ1 ,τ2,τ3

∑
(7)

This normalisation is necessary not to bias the
cross-correlation measure.
3.2 A lower complexity classifier using only

a slice of the cumulant

The fourth order cumulant     Cx,4,2
xmod (τ1,τ2,τ3 )  is a 3

dimension pattern which complete estimation is
very time consuming. In order to obtain a lower
complexity system (and so time efficient) , we pro-
pose to estimate only a slice     Cs

xmod (τ )  of the cumu-
lant (5), under the condition this slice still contains
discriminant information. Among several possible
candidates, the slice we have retained is the one
which minimises, according to the classification



procedure, the correlation coefficient ρ  between the
slices obtained for the two modulations

    
ρ = C

s
16QAM(τ )N .C

s
4PSK(τ )N

τ
∑ (8)

The selected slice is found to be

    

Cs
xmod (τ ) =Cx,4,2

xmod (0,τ ,τ )
= IE[x 2(0)x 2* (τ )]−2IE 2[x(0)x * (τ )]

(9)

or, by developing (5)

    Cs
xmod

T T( ) ( ). ( ) . ( )τ γ ψ τ γ τ= + −2 84 4 2
2 2∆ ∆ (10)

with     ∆T T TT T( ) ( | |) /τ τ= − ⋅1I [- , ] .
An asymptotically unbiased and gaussian estima-
tion of (9) is classically obtained by time averaging
over the available data, using the approximation

    
IE[ y(t)]≈

1
N d

y(i)
i=1

Nd

∑ (11)

where y(t) (as x(t)) is an ergodic and stationary pro-
cess.

4 THEORETICAL PERFORMANCE

The probability of correct classification   Pcc  is given
by:

    

Pcc = − <{ }
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where     ρ /mod2
mod1  is defined by (6). We note

    ρ /xmod
diff = ρ

/xmod
4PSK −ρ

/xmod
16QAM

(13.a)

    IE[ρ
/xmod
diff ]=m

/xmod
diff (13.b)

    IE[(ρ
/xmod
diff −m

/xmod
diff )2 ]= (σ

/xmod
diff )2 . (13.c)

Under the hypothesis that the coefficients     ρ /xmod
diff  are

gaussian1, the   Pcc  can be written, using (13)
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with 
    
erfc( t) = exp(−u2 )du

t

∞

∫ .

The parameters     m/xmod
diff  and     σ /xmod

diff  are given as
functions of the means and variances of the cumu-
lant estimates. If we note     ατ =C

s
4PSK(τ )N  and

    βτ =C
s
16QAM(τ )N , then it can be easily shown that

1  This hypothesis stands only if the estimated
cumulants for different offsets τ  are independants.
Although this condition is not satisfied, we note
however in practice that the probability density
function of the coefficient     ρ / xmod

diff  is correctly
approximated by a gaussian function.

    
m

/xmod
diff = (ατ −βτ ).Cs

xmod (τ )
τ
∑ (15.a)

and 

    

σ α β α β

τ τ

τ τ τ τ
τ τ

/
,

( )( )

cov ˜ ( ), ˜ ( )

xmod
diff( ) = − − ⋅{

[ ]}
∑

2

1 2

1 1 2 2

1 2

C Cs
xmod

s
xmod . (15.b)

Unlike     m/xmod
diff , the theoretical value of the

covariance 
    
cov ˜ ( ), ˜ ( )C Cs

xmod
s
xmodτ τ1 2[ ] can not be

reasonably calculated. To obtain an approximation
of the theoretical error probability of the system,
we use an approximation of the covariance by
applying the formula given in [5] with   MT =T  and
processing only one realisation of the process.

5 SIMULATION AND DISCUSSION

Simulation have been performed on simulated ba-
seband signals in white gaussian noise for different
signal to noise ratio S/N (S/N = -5, 0, 5 dB). The
number of transmitted symbols Ns (symbol period
T=10) varies from 50 (500 sampling data) to 5000
(50000 sampling data). For each couple (S/N,Ns),
1000 noisy and different signals (different symbol
sequences, noise samples and timing phases) are
generated for each modulation. The figures (2 a-c)
give the theoretical (equation (14)) and experimen-
tal performance obtained for different Ns and at a
given S/N.
We can see that simulation results are quite close
to the theoretical performance. It seems to be rea-
sonable according to the approximations made: 1)
gaussian approximation of the cumulant estimates
(asymptotically verified), 2) gaussian approxima-
tion of the correlation measure     ρ /xmod

diff  (experimen-
tally verified), 3) approximation of the estimated
covariance, and 4) approximation to 0 of the bias of
the cumulant estimates (asymptotically verified).
For S/N ≥ 0, the system offers good performance.
We obtain a false classification lower than 10 % for
only 500 transmitted symbols. Confusion matrices
have shown that the errors are principally due to a
misclassification of the 16 QAM signals which can
be explained by the greater variability of the sym-
bol values for a 16 QAM compared to a 4 PSK mo-
dulation inducing a worth estimate of the statis-
tics.

6 CONCLUSION

We have presented a classification system for
4 PSK vs. 16 QAM modulations based on the reco-
gnition of the estimated slice     Cx,4,2

xmod (0,τ ,τ )  of the re-
ceived signal. We have shown that this method can
be applied to complex (baseband) or real-valued
(carrier-modulated) signals. Under the hypothesis



that we a priori know the carrier parameters and
the symbol period, very good performance can be
obtained for low S/N with white gaussian noise.
This hypothesis can be however avoided by proces-
sing the module of the cumulant of the equivalent
baseband signal and by searching the symbol per-
iod which maximises the cross-correlation. The ap-
proximate theoretical performance are close to si-
mulation results and the system gives good per-
formance for S/N ≥ 0 dB and Ns ≥ 500.

APPENDIX

The frequency dual of (6) is the polyspectrum of the
signal x(t) which can be written (application of the
3D Fourier Transform (FT))
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where H f( ) = FT h t( )( ) is real-valued and even, δ .( )
is the Dirac distribution and

C f f f H f H f H f H f f fH 1 2 3 1 2 3 1 2 3, ,( ) = ( ) ( ) ( ) + +( ).
According to the values of γ ψ4 4+( ) and γ 2  for the
N PSK and the M QAM modulations, we see that
the polyspectrum (and therefore the cumulants) for
the two modulations are different and not propor-
tional if
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or equivalently

    
H f H f

i
T

H f H f
i
T

f f
i
Ti

( ) ( ) ( ) ( ) ( )1
0

1 3 3 1 2 0
≠
∑ − + − + + ≠δ (A3)

which is equivalent to the condition

    
bandwith of H ( f )( ) > 1

T
. (A4)

For 
    
h(t) =1I −T 2,T 2[ ] , we have     H ( f ) = sin(πfT ) / πf

and (A4) is verified.
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Fig.2a: Pcc for S/N=-5 dB
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Fig.2b: Pcc  for S/N=0 dB
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