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ABSTRACT

When the variance of the delays is assumed to be rel-
evant in a series of recurrent signals, two approaches
are encountered. Either each delay is estimated al-
lowing the computation of the sample variance (indi-
vidual method) or the expected variance is directly
estimated (global method). These two approaches
are statistically compared using the global method
introduced in a previous work and two individual
methods: a Averaged Square Difference Function
based estimator and a linear system based one. We
finally show that the global method exhibits an in-
teresting behaviour mainly due to its unbiasness.

1 INTRODUCTION

In this communication, we assume that a large num-
ber N of realizations of a recurrent signal s(t) are ob-
served with a random delay, in a noisy environment.
To take examples in biomedical field, the deterministic
and transient signal s(¢) may be an evoked potential, an
myoelectric signal, an electrocardiogram. The random
behaviour of these realizations is assumed to be due to
the random delay and the additive noise. The study of
another classical time-transform as the scaling instead
of the delay has been achieved in previous works [3,2].
Each realization #;(t) is modelized using the following
expression :

zi(t) = s(t—d;)+n; (1) (i=1...N;0<t<P) (1)
The random delays d; are assumed to be small and to be
realizations of zero mean identically distributed random
variable (iidrv). The noise n;(t) is a zero mean white
gaussian process.
In some circumstances, the knowledge on the statisti-
cal description of the delay is more important than the
delay itself. We are interested in the second order sta-
tistics because it can be a relevant quantity in the case
of physiological delays.

Figure (1) shows two different ways in estimating the

delay variance. The first and obvious estimator is 157

which needs all the estimated d; (d;) to compute the
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Figure 1: two different ways for the o2 estimation

classical sample variance (individual method). The sec-
ond estimator 267 is based on a previous work [4] where
we showed that the delay variance can be estimated di-
rectly from the set of the N realizations (global method)
under some hypothesis on the delays and the spectrum
of signal s(¢). In [2] we have shown that a minimum
variance estimation can be achieved even in the pres-
ence of colored noise. The global method was initialy
developped to take into account the loss of a major hy-
pothesis : for a given realization the delay is constant.
An example of a variable delay is given in [4].

When this constancy is assumed, it is straightforward
to compare the two approaches. So, we propose to char-
acterize these two estimators (107 , »02) studying their
mean and variance. We will compare them using the
same approach based on a series expansion which will
be valid when delays are small enough.

In order to estimate each delay with the best accu-
racy, we will use the Average Square Difference Func-
tion (ASDF) because of its advantageous formulation
[1]. We will show that the ASDF with parabolic inter-
polation [1] can be replaced by a close form using an
explicit Least Square solution of a linear system when
the delay is small enough.



2 THEORETICAL DEVELOPMENT

When the model of the delayed signal z;(¢) is given by
(1), the assumption of the sufficient smallness of the
delay leads to use the following second order approxi-
mation of the signal variance [4]:

(2)
where the symbols = and = correspond to the sample
mean and the sample variance, respectively and s(p)(t)
the p'® derivative of s(t).

In a sampled time formulation (period equal to T'), the
previous equation becomes :

62~ A0 +b (3)
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Where 2 is the sample variance of x;, 1 the unit
vector, 62 the sample noise variance and b the random
error due to the incertitude of the noise variance estima-
tor. The symbol “-” means the component wise product.
The values a and 3 correspond to those in (2).
The sample variance being asymptotically unbiased and
the number N large, the random vector b is zero mean

so we can assume that the least square estimation (6)
of 8 is unbiased. Let’s now evaluate the covariance of 8:

cov(0) = (AT A) "' AT E[bbT1A(AT A)™Y (6)

The whiteness of the noise n; leads to simplify E[bb”]
by 2851021 [2] so (6) becomes :
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The first component of 6 will be noted 265 and will
be an estimate of o2 (sample variance). From (4) its
variance is defined by :

) 2
var(,63) ~ Nanlxz (8)
The coefficient K5 1s a non linear function of the suc-
cessive derivatives of s. Some numerical values will be
given by simulation but not its analytic expression.

We have shown that 26’3 can be considered as an unbi-
ased estimator of 6% whose variance is given in (8). The
next step will be to show that the ASDF with a par-
abolic interpolation [1] has a close form using a linear

52 (t) ~ sV (t)&f,_s<2>(t)5<1>(t)ﬁr%s(?f(t)(ﬁ_ﬁz)w?

system. First of all, let’s recall this time delay estimator

(Ciz’,A) Of dz

dia= argminRiyA(T) (9)
L N
R; a(r) = NZl‘Z (kT) —s kT—I—T)]
k=1
1
= N<Xi_s7',xi_s7'>
1
= N(< X, X; > —2 < Xi,8; >
+ < s;,8; >) (10)

with s, the vector corresponding to the sampled signal
s+ 7).

The parabolic interpolation of RZ'VA(T) around its apex
leads to the two typical steps:

o Locate the iqdex m of the maximum cross-
corelation lag R; 4(mT) (coarse estimate)

e Evaluate the time delay ciiyA using the following
equation (fine estimate)

T Ri a(mT +T) — R; a(mT —T)

di g = —=— = —
AT T2 R A(mT A+ T) — 2R a(mT) + Ria(mT — T)

+mT (11)

One can show that using the definition of RLA(T) (10),
the previous equation can be rewriten using some scalar
product operations:

d; 4 =

Z < X4, 8mT-T > — < X§,SpT4T >
2 <Xi, Smr4T > —2 < Xi,Smr > + < X4, Spr_T >

+mT (12)

The conditions needed to use a series expansion in order
to give the expression of a2(t) (2), are easily fullfiled
when the delay corresponds to mT £ 7. So, the delayed
vectors spr—7 and sp,ryr can be approximated using
a second order series expansion:

(mT —T)?

Smr-T ~ s+ (mT — T)s(l) + 5 s
2
sorar A s+ (mT +T)sD + MS(Z)

When we introduce these two approximation in (12) and
after some calculus, we finally obtain:

5 < Xj, s(1) >
dipg=——""—"6+— 13
A < x;,82) > (13)
Then using a parabolic interpolation and a second order
series expansion leads to the ratio of two scalar products

(13).



We are going to show that this result is almost the
same than those obtained with a second order series
expansion of the delayed signal s(t — d;).

Equation (1) is replaced by:

2i(t) ~ s(t) — dis™ (1) + %d?s(z)(t) +ni(t)  (14)

and expressed in a vector form (after sampling):

x; ~ BO; +n; (15)
with
B = (s| s | s<2>) (16)
and .
6;=(1 —d; d7/2) (17)

The least-squares solution of the system (15) is :
6; = (B'B)"'B'x, (18)

Using the definition of B (16) and the assumption that
s vanishes at the limits of the observation interval, the
product BYB is equal to :

<s,8 > 0 <s, s>

B'B = 0 < s s > 0
<s,s® > 0 < s g2 >
(19)
One property of such a matrix is that its inverse has the
form:

pil 0 Y2
BB = 0 Zwsms 0 (20)
Y2 0 Y3

Then the product (BTB)_lBT Is :
’YlST +725(2)T

(B"B)"'B" = | wmaos stDT (21)

Y287 + 735(2)T

The expression of 7; will not be given but can be easily
evaluated. From (17) , (18) and (21) we can deduce the

least-squares estimation (d;) of d; :

g1
- < X;,8V >
di = < s s1) > (22)

Using the properties of n;, the unbiasness of the least-

squares estimate (él) is clearly stated and its covariance
18 :

cov(6;) = o2 (BTB)™? (23)

So, using (20) the variance of d; is :

9 1
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nZ s(l),s(l) N O'n[\l (24)

var(cii) =0
At this stage we can compare the estimation of d; fol-
lowing the two approaches, i.e the ASDF (ciiyA) and the
solution of the previous linear system (CZZ) There is a
direct equality when we use (14) and the following in-
equality:
d2

< s(l)’ s(l) > > ?Z < 5(2)’ 5(2) >+ < ny, 5(2) > (25)

In the following, we will use CZZ as an estimate of d;
because 1ts variance is easily expressed and the assump-
tions used in its statement are the same than those for
the global method. Contrarily to the ASDF estimate,
we will not assume that s is a strictly band limited ran-
dom signal.
Let’s assume that CZZ 1s used to estimate each delay d;
(i=1...N), and let’s call 162 the sample variance cal-
culated with the d; previously calculated. The sample
variance of the true delays d; will be called 2.
Let’s recall that 263 is the estimation of 62 using the
global method (2) and that it is characterized by its un-
biaseness and its variance (8). In (5), we can see that
202 is the estimate of 6% (sample variance) but not o3
(theoretical variance). So, to characterize 102 we must
substract 63. We are going to characterize the mean
and the variance of 16’3 — &Czl
Using the definition of 15’3, &Czl and CZZ

1 1
1&§:N 3 df—(NZ;dl)z (26)
1 Y 1
2 2 N2
Ud—NZ;di—(NZ;dz) (27)
and
Ciizdi—l—ei (28)

where ¢; 1s the error in the estimation of d;.
The mathematical expectation of 165 — 3 can be eval-

uated by :
) . N -1
E[loﬁ—ofl]:Toi (29)
The variance of the error e; has been previously evalu-

ated (24) then (29) has its final form :

N-1
E[162 —62] = = 02K ~ 0l K, (30)

The variance of 16’3 — &Czl has the form :
varly63 — 6] = Bl(163 — 63)°] = E*[iog — 3] (31)
After some development, we get:

2(N -1 4(N -1
—l= (N2 )a§+ (N2 )0'30'2

var[, 63

(32)
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and using (24), we finally get :

N-1
var[162 — 3] = W(%ﬁf(f + 40302 K1)

1
N(%ﬁf(f + 40302 Ky) (33)

X

So, we have shown that when the noise variance cannot
be estimated, the first estimator (103) is biased but not
the second one (263).

3 SIMULATIONS

In order to correctly compare the two estimators, we
must take into account their variance (33) and (8) for a
fixed value of K (24) and K3 (8). As the expression of
K5 1s not defined we will use a simulation based on N
(equal to 1000) gaussian shape and randomly delayed
signals with a gaussian jitter whose theoretical variance
is equal to o2 = 0.25.
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Figure 2: two realizations of s(t — d;) corresponding to the
min and max values of d;

Figure (2) shows the minimum and maximum delayed
signal. For signals in fig. (2) , the coefficients K, and K
are: Ky = 12.02, Ky = 7967. Using these coefficients we
calculate in fig. (3) the theoretical Mean Square Error
(MSE) for different values of ¢2. In fig. (3), the sim-
ulation results, indicated by the dotted line, have been
obtained from 500 independent runs.

We can notice a good agreement between the theoret-
ical results and the simulation ones for low SNR (e.g.
02 = 0.1 corresponds to SNR = 5dB). The departure
in results for high SNR (small o2 values) is due to the
approximation errors in (2) which become preponder-
ant when the noise effect is neglectable. These errors
are mainly due to the approximation E[nv] = E[n]E[v]
for two independent random variables when the sample
mean 1s used instead of the mathematical expectation.
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Figure 3. Mean Square FError in function of o2. group 1:
162 group 2: 263, For each group, the solid line represents
the theoritical value and the dotted line the simulation re-
sults

4 CONCLUSION

The second approach of ¢ estimation, called 2% (global
method), was initially proposed in a particular case
where the jitter may vary in function of time leading
to 02(t). We have shown that when ¢ is independent
of time our approach can be advantageously compared
to classical one. In a first time, the considered reference
has been the ASDF and in a second time a simple linear
system close to an expansion of the ASDF. Theoretical
and simulation results have been given for a statistical
comparison. The major drawback, highlighted by the
comparison, in the 162 estimator (individual method) is
the presence of bias. In some circumstances, the knowl-
edge of the noise statistics could be used to reduce it.

Nevertheless, the assumptions encountered in the second
estimator (;07) statement reduce its application field.
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