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 Abstract

This paper investigates the convergence properties of
a variable step normalized LMS (VSNLMS) adaptive
filter algorithm. Instead of a fixed step-size used in
the conventional normalized LMS algorithm, the
step-size of the algorithm under study is updated in
each iteration, based on an expression related to the
output errors. The variable step-size improves the
convergence speed, while sacrificing little in
complexity. For an application where the adaptive
filter is used to track a time varying channel it is
shown that the step-size converges towards its
optimum value. Simulation results are presented to
support the analysis.

I. Introduction

In recent years, many new adaptive systems with the
capacity of tracking both stationary and nonstationary
signals have been  applied to practical  use, such as
echo cancellers in a conference room, or automatic
equalizers in digital cellular radio systems which
exhibit rapid fading problems. In such applications, a
fast adaptive filter algorithm is necessary to cope
with both stationary and nonstationary environments.

For complexity reasons, there is still strong interests
on the study of simple and efficient LMS algorithms
and of normalized LMS algorithms under various
nonstationary conditions. It is well known that the
mean square error of the LMS algorithm with
nonstationary signals consists of the gradient noise
and weight vector lag. Both components are functions
of the step-size ( )µ . This makes the selection of the

optimal step-size difficult. This fact has severely
limited the usefulness of algorithms with fixed step-
sizes in some applications. Moreover, the normalized
LMS algorithm becomes unstable when the norm of

the input vector tends towards zero. The problem is
caused by the division in the procedure of the
normalized LMS algorithm. A solution to this
problem is to interrupt the coefficient update when
the norm of an input vector is smaller than a
threshold [2].

In reference [1], a variable step size LMS (VSLMS)
algorithm is proposed which improves performance
over the fixed step size LMS: at the beginning of the
adaptation, the error is large,  causing the step size to
increase and  provide faster convergence speed.
When the error decreases, the step decreases thus
yielding smaller misadjustment. Unfortunately, this
algorithm is dependent on a priori knowledge about
the statistics of the environment. In reference [2], a
modified NLMS algorithm focused on the stability
and convergence speed is presented, but its fixed step
size limits its convergence speed.

These problems can be solved by the proposed
approach, namely, a variable step-size normalized
LMS adaptive algorithm which selects the optimal
step-size interactively, and overcomes many of the
limitations of the methods discussed above. This
paper has two contributions, the first is the analysis
the proposed algorithm. As the second, we derive the
expressions for the mean square error  and
misadjustments of the filter, which give guidelines
for the design of the adaptive filter. The results
derived from the analysis are verified numerically
through computer simulations for an example of
adaptive equalization system.

2. The variable step size normalized
adaptation.

The proposed adaptation consists of introducing the
variable step size µ ( )n , updated  by the expression
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into the classical normalized LMS algorithm:
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Here, X
T denotes the matrix transpose of X, W(n) is

the coefficient vector of the adaptive filter  at time n,
which is defined by

[ ]W n w( ) ( ),= 1  w(2),  ,  w(N)�                               (3)

where N is the number of  coefficients. X(n) is an
input vector

[ ]X n x n( ) ( ),=  x(n -1),  ,  x(n - N + 1)�                       (4)

The output signal of the adaptive filter is expressed as
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where ξ( )n  corresponds to the optimal estimation

error process; and
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min
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is the minimum value of the MSE.

Let W n
opt

( )  denote the optimal coefficient vector for

estimating the desired response signal d(n) using
X(n). We assume that  W n

opt
( )  is time varying, and the

time variations are caused by a random disturbance of
the optimal coefficient process. Thus, the behavior of
the optimal coefficient process can be modeled as

W n W n n
opt opt

( ) ( ) ( )= − + −1 1η                       (8)

where η ( )n −1 is a zero-mean independent disturbance

process with covariance matrix σ
n

I
2 . We will

assume that the triplet { }X n( ),  (n),  (n -1)ξ η  is a
statistically independent random process.

In Eq.(1), ρ is a small positive constant that controls

the adaptive behavior of the step-size sequence µ( )n .

To assure convergence of the mean square error, it
can be shown that a sufficient condition is [4].
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Where M adj is the misadjustment level for the fastest

convergence, defined by

M adj = E ex

ζ min

         (10)

It is known that the value of µ( )n is determined

from Eq.(9) according to the final misadjustment
requirement E

ex
, so in the next section, we will derive

the final E
ex

.

It is noted that if µ( )n  falls outside the range in (9),

we can bring it inside the range by setting it to the
closest of the boundaries of  Eq. (9).

3. Convergence Analysis of VSNLMS

When operating in stationary and nonstationary noise
environments, we consider the effect of the
interruption of the coefficients update when the norm
of input vector is smaller than the threshold:

[ ]E X n( )
2
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Let

V n W n W nopt
( ) ( ) ( )= −                   (12)

denote the coefficient misadjustment vector at time n.
The output error of the system is

e n d n X n W n
T
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Substituting  Eqs.(7), (8) and (3) in (12) results in
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Now, using the independence assumption and the
uncorrelation  of µ( )n  with X(n) and ξ( )n and

combining usual analysis techniques for Gaussian
input with the approximation that µ( )n  and

µ2 ( )n are uncorellated with the data,

The  following equation for the second moment
matrix of the coefficient vector is obtained
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where
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The convergence value is defined using Eq.(16) as
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and the mean and mean squared behavior of the step-
size sequence µ( )n  can be shown to follow the non-

linear difference equations:

[ ] [ ] [ ]E n E n n X nµ µ ρ( ) ( ) ( ) ( )= − +1 E e(n)e(n - 1)X
T         (19)

In order to obtain the steady-state values  E[ µ( )∞ ],

and E[ µ2 ( )∞ ] of the step-size, we have made use of

the independence assumption, the uncorrelatedness of
µ( )n  with other quantities involved, and the fourth-

order expression of Gaussian variables expressed as a
sum of products of second-order expectations [3]. We
will set  σ

n

2
0=  for stationary environments, and, after

some simplifications,  we get the convergence-value
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The corresponding steady-state excess-mean-squared
estimation error  is given by
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ρ  is usually chosen to be very small and this implies
that  E

ex
is also very small. Now,
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For  nonstationary environments, σ
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0≠ , we  get
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From Eqs.(22), (24), in stationary and nonstationary
applications, it follows that when ρ  is chosen close

to 0,  the VSNLMS algorithm brings down the
misadjustment to smaller values. That means that it
is possible to get arbitrarily close to the optimal
performance of VSNLMS by choosing ρ
appropriately.

4. Simulation

The simulation results presented in this section will
show the potential performance of the VSNLMS
algorithm. Results will be presented for the adaptive
equalization of a simple channel with various
eigenvalue spreads and a time varying channel. This
channel has been used already as a test case for
various algorithms. The impulse response is

( )
h n

n

W( )
( cos= +

−
















1

2
1

2 2π
        n = 1,2,3

0                                       otherwise 

       (25)

Where the eigenvalue spread is 6.08 for  W=2.9 and
21.71 for W=3.3. The adaptive equalizers have 11
taps. The simulations include an additive noise power
of σ

n

2
0 001= . , which gives ξ

min
= 0.003178 for W=2.9,

and ξ
min

=0.002476 for W=3.3.

Figure 1 shows that the speed of convergence of the
VSNLMS algorithm is essentially unaffected by the
eigenvalue spread. However, the computer
simulations show that the step-sizes of the VSNLMS
algorithm do not convergence towards their optimum
values when the input samples to the adaptive filter
are highly correlated, so that the ratio of the
maximum to minimum eigenvalues of R is in the
order of hundreds or above. This algorithm converges
much faster than the VSLMS, and the steady-state
value of the averaged squared error produced by the
algorithm is much smaller than in the case of the
LMS algorithm. In Fig.2, we observe that the
VSNLMS algorithm is able to track an abruptly
changing channel. Results are obtained  by averaging
over 200 independent runs ( ρ =0.0005).
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Fig.1 Simulation for the LMS, VSLMS and VSNLMS algorithms for
channel with different eigenvalues spread ( µ ( ) . )0 0 005= .
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Fig.2 Simulation for the VSNLMS filter algorithm for an abruptly
changing channel.

5. Conclusions

In this paper, we have studied a variable step-size
normalized LMS adaptive filtering algorithm, which
overcomes the disadvantages of  the selection of step-
size  µ  and misadjustement of LMS algorithm. To

counter the unstable behavior of the VSNLMS
algorithm when all the elements of an input vector
are very small at the same time, we use a threshold to
interrupt  the adaptive filter coefficient update. The

simulation results show that the initial convergence
speed has a significant convergence rate
improvement over LMS. The algorithm seeks to
adjust the step-size in the direction of the optimal
value in the case of nonstationary environments, and
the algorithm is relatively insensitive to the
eigenvalue spread of the input data.
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