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ABSTRACT

We consider the problem of sources separation. Two
necessary and sufficient conditions involving high-order
cumulants are given and proved. Hence, a family of
criteria for source separation is obtained. A novel gra-
dient based algorithm 1s derived in order to optimize the
proposed criteria and various computer simulations are
presented in order to illustrate the performances of the
algorithm.

1 INTRODUCTION

The source separation problem is receiving an increas-
ing interest because of practical applications in diverse
fields of engineering and applied sciences like commu-
nications and array processing: e.g. interference can-
cellation in transmission and localization of radiating
sources with perturbed arrays. It can be simply for-
mulated as follows: several unknown linear mixtures of
certain independent signals called sources are observed.
The objective is to recover the original sources without
knowing the mixing system. Hence this must be real-
ized from the only knowledge of the observations. This
is the reason why this kind of approach is often quali-
fied as “blind” or “unsupervised”. It is well known that,
in general, conventional methods based on second order
statistics (i.e. correlation or power spectrum) are not
sufficient to solve the problem.

The first designed adaptive algorithms (available in
the real case) include non linearity functions in order
to test independence [3]. However these adaptations
laws are heuristic and might not converge to a separat-
ing state. Recently algorithms based on sources sepa-
ration criterion were proposed. Some of them require
a prewhitening stage prior the proper separation, e.g.
[1][2][6] while in [4][5] this preprocessing is not necessary.
In this paper we consider the problem with a prewhiten-
ing stage.

2 PROBLEM FORMULATION

The classical linear memoryless mixture model is con-
sidered. It reads
z=Ga+Db (1)
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where @ is the (N, 1) vector of observations, a the (N, 1)
vector of statistically independent sources, b the (N, 1)
vector of additive noises and G the (N, N) invertible
mixture matrix. The sources separation problem con-
sists in estimating a matrix H such that the vector

y=Hae (2)

restores the N input sources @;. With no noise, this
means to identify the inverse G™! of the mixture ma-
trix (up to the product of any invertible diagonal matrix
and any permutation matrix). For this task, the key hy-
pothesis is the joint independence of the N sources and
the non-zero character of some of their cumulants. Thus
Gaussian sources are excluded. Without loss of gener-
ality, the sources can be assumed zero-mean with unit
variance, i.e. Eaa®™ = I where the superscript ¥ means
“conjugate and transpose” and E is the mathematical
expectation operator. It is useful to define the matrix
S of the global system as

S2HG, (3)
hence with no noise and according to (1) and (2)
y=Sa . (4)

Because sources are assumed inobservable, there are
some inherent indeterminations in their restitution.
That is, in general, we cannot identify the power and
the order of each sources. Hence they are said separated
if and only if the global matrix reads

S=DP (5)

where D is an invertible diagonal matrix and P a per-
mutation matrix.

3 SOURCE SEPARATION CRITERIA

Contrast functions as defined in [1] constitute separation
criteria in the sense that their maximization solve the
source separation problem. We consider white vectors
y, 1.e. vectors y such that

Eyy”? =1 (6)



where I is the (N, N) identity matrix. Let us define the
function

N
N
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where C, qy; = Cum(yi, ..., 4,45, ..., ¥ ) is the (p, ¢)
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pX gX
order cumulant of random variable y;. The superscript
* stands for the conjugate operation and px (resp. ¢x)
means that we have p (resp. ¢) terms.

Proposition 1 For any statistically independent ran-
dom vector a, any orthonormal matriz S and for p+q >

2, we have L, o)(Sa) < L, 4 (a).

Proof: Thanks to the independence of the a;’s, we have

Z|Z z] 1Cyp qa;]
Z p.at;] Z |sij [P
i=1

I(p,q)(sa)
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Now because S is orthonormal, ¥j, Zf\;l |si;]* = 1.
With p 4+ ¢ > 2 one easily has Vj, Zf\;l |si;|PTe < 1.
Thus
N
Sa ) < Z vl = I(p,q)(a) (8)
and the proposition 1 is proved. .

Proposition 2 For any statistically independent ran-
dom vector a having at most one null cumulant of or-
der (p,q) and for p+q > 3, I(pq)(Sa) = Zipq(a) if
and only if S = DP where P is a permutation and
D = diag(dy, . ..,dn) such that Vi, |d;|* = 1.

Proof: The equality in (8) requires the equalities
Zf\;l |5;;[PT9 =1 for all j such that |C, 4a;| # 0. Since
vy, Zf\;l |s;j]* = 1 and p+ ¢ > 3, this is possible if and
only if columns j of S have only one non zero compo-
nent of modulus 1. That is for at least N — 1 columns
because we assume that a@ has at most one null cumulant
of order (p, ¢). Because S is orthonormal then S = DP
where P is a permutation and D = diag(dy,...,dn)
such that Vi, |d;|* = 1. .

Theorem 1 The function T, »(y) , p+q > 3 is a
contrast over the set of white random vectors having at
most one null cumulant of order (p, q).

Proof: One easily has for all permutation matrix P,
Zp,q)(Py) = Z(p o) (y) and for all orthonormal diagonal
matrix D, Z(, ,)(Dy) = Z(,,4)(y). Propositions 1 and 2
finish the proof. .

Hence by the theorem, for white random vector y de-
duced from a linear transformation of an independent
vector (cf. (3) with b = 0), a necessary and sufficient
condition for separation is

N N
Z 1Cp,quil = Z |Cp qi - (9)
i=1 i=1

This leads to the following constrained separation crite-
rion

subject to Eyyf =1 . (10)

N
max Z 1Cp,quil
i=1

Now let us consider the specific case of sources with
identical sign €, of their (p,p) order cumulants, i.e. Vi,
sgn(Cp pa;) = €p, we have the following theorem:

, A
Theorem 2 The function Jip p)(y) = & Zf\;l Cp p¥i,
p > 2 ,1s a contrast over the set of white random vectors
having non null cumulant of order (p, p).

Proof: Because y = Sa, we have C,,y =
Zf\;l |5i;|*#Cp paj.  Because |s;j|** > 0 and Vi,
sgn(Cp pa;) = ¢p then Vi, sgn(Cp, ,yi) = €, and the proof
follows directly from Theorem 1. .

As previously we can deduce necessary and sufficient
conditions for sources separation and the corresponding
constrained maximization criterion reads

N
max &p Zprpyi subject to Eyy® =1. (11)
i=1

4 GRADIENT-BASED ALGORITHM

We consider that a first stage realizes a whitening of the
observations. This “classical” stage will not be discussed
here, see e.g. [6]. The whiteness of y is then ensured if
H is orthonormal. In order to find such an orthonormal
matrix H which separates the sources, a gradient-based
algorithm is proposed in order to maximize the contrast
Z(p,q)(.). For this task one can used a parametrization
of H e.g. by planar (Givens) rotations as in [1][2][6].
Here we choose not to parametrize and H is updated
thanks to

ILip,q)

OH

where H and H' are respectively the separating matri-
ces before and after the iteration, A a positive constant
and 0Z(, ,y/0H the matrix whose (£, m) component is
8I(pyq)/3h5m. Recalling that H has to be orthonor-
mal, it is easily seen that the iterative procedure (12)
does not keep H orthonormal, i.e. H' is not orthonor-
mal. Hence we need a normalization operation in order

H =H )22 (12)



to maintain the orthonormal character of H thoughout
the iterations. This reads

H" = N(H') (13)

where H' is the separating matrix after the normaliza-
tion. This operation is described now. Consider the sin-
gular value decomposition of H': H' = UWVH where
matrices U and V are orthonormal and W is diagonal,
then we impose H” = UV,

In order to determine the gradient of the contrast
Zip,q)(.), for the sake of simplicity we consider first the
real case where ¢ = 0 and we denote Z, = Z(, oy and
Cp = C(p,0). Differentiating Z,(.) with respect to hep,

one has
N

0T, oC Yi
8th = ngn(cpyi)ﬁ (14)
m i=1 m
where sgn(C,y;) is assumed constant. According to (3)
in the real case C,y; = Zj\f:l sijpaj and we have
N
0C,y; —1
ﬁ = pdi ngjsfj Cpa;
j=1
= P 6iﬁcum(yia"'ayiaxm) (15)
——
(p—1)x

where §;; = 1 if £ = ¢ and 0 else. Finally using (15) in
(14), one obtains

oz
P = psgn(Coye)Cum(ye, ..., Ye, Tm) - (16)
8h£m S——
(p—1)x

In a similar way for the complex case, we have

9Zp p)
——= = 2psgn(C Cum(ye, ..., Yo, Yp, -, Ur, 20,) -
Do psgn(Cppye) (ye Ye, Yo Ye )
pX (p—1)x
(17)

In the case p # ¢, the derivative of Z(, ,y(.) leads to a
more complicated expression and therefore will not be
presented here.

Consider now the important special case p = ¢ = 2.
The algorithm is then based on fourth-order cumulants.
We have for zero-mean random variables

Cyx = Elye|*yeal, — 2E|ye|*Eyex, — Ey;Ey; ), (18)

where Cyx 2 Cum(ye, ye, yi , 2,). Moreover, in order to
simplify, we shall further assume that Vi, Ea? = 0 in the
complex case. Note that this assumption is not very re-
strictive e.g. in digital communication where most signal
constellations satisfy it. This implies that V¢, Ey? = 0
and recalling that V¢, E|y,|? = 1, we have

Cyx = Blye|*yexs, — 2Eyex}, . (19)

In practice the exact cumulants are unknown and can
only be approximated by their sample estimates using

avalaible data. Hence we replace the mathematical ex-
pectation in (19) with sample averages

= - D w0 OeP -2 (20

where Ny 1s the number of avalaible data.

Convergence analysis of the proposed algorithm is be-
yond the scope of this communication. However com-
puter simulations are presented in order to show that
the proposed algorithm works.

5 COMPUTER SIMULATIONS

The performances of the algorithm are associated to an
index/measure of performance defined on the global ma-
trix S according to

(>

. 1 |sij|*
do(S - — ]
m ( ) 9 Z Z mzax|5iz|°‘

i .

+Z Z& 1] (21)

ax|se;|*

where a > 1. This positive index is indeed zero if S
satisfies (5) and a small value indicates the proximity to
the desired solutions.

Simulations are presented in the case of two sources.
The mixing matrix is taken orthonormal such that the
prewhitening stage 1s not necessary

cos f isin @ T
G= ( —isin 6 —cosﬁ) ’ 6_4()@' (22)

We consider the index ind, and its initial value is thus
1.41. The algorithm (p = ¢ = 2) is tested for differ-
ent sources, data-block sizes and noise levels. A white
Gaussian noise 1s considered and the SNR is defined as
the ratio of the power of a; to the power of b; assumed
equal for all . In each cases, we have use 200 Monte-
Carlo runs and the average inds is plotted.

In Fig.1 (resp. Fig.2), the input symbols are indepen-
dent realizations from two 4-QAM (resp. V27) sources
and the data-block size equal 100. In all cases, depend-
ing on the SNR, the averaged index decrease monoti-
cally. With no noise it achieves the steady-state level
of —160dB while with SNR=20dB and SNR=10dB the
levels are —37dB and —25dB respectively.

In Fig.3, the input symbols are independent realiza-
tions from two 16-QAM sources. For data-block sizes
Ng = 100, 500 and 2000, the averaged index decrease
monotically to reach the steady-state level of —23dB,
—30dB and —37dB respectively. Fig.4 illustrates the
influence of the noise for Ny = 2000. It shows the de-
crease of the steady-state level of the index: —36dB and
—32dB when SNR=20dB and SNR=10dB respectively.
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Figure 1: Averaged performance index for two 4-QAM
sources, for different SNR and Ng; = 100.
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Figure 2:
sources, for different SNR and Ng; = 100.
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Figure 3: Averaged performance index for two 16-QAM

sources, for different Ny and with no noise.
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Figure 4: Averaged performance index for two 16-QAM

sources, for different SNR, and Nz = 2000.
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