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ABSTRACT:

In this paper, the steady-state performance of the
Least Mean Square (LMS) adaptive second order
Volterra filter, with constant step-sizeµ , in a time-
varying setting, is analysed. The quantitative
evaluation of the steady-state Excess Mean Square
Error (EMSE), where the contribution of the gradient
misadjustment and the tracking error are well
characterized, is established . The optimum step-size
for time-varying second order Volterra filter is then
given. Thus, we can study the correlation between the
Excess MSE and the optimum step-size in one hand
and the parameters of the time-varying nonlinear
system, in the other hand. Furthermore, the steady-
state behavior predicted by the analysis is in good
agreement with the experimental results. The
adaptive filter was used in a second order Volterra
system identification in a non stationary
environment.

1. INTRODUCTION

The convergence analysis of the LMS adaptive
algorithm in the mean and the mean square context
has been studied for stationary linear filter in many
works [1][2]. In the non-stationary linear filtering,
the tracking properties and the problem of finding an
optimal value of the step size of the adaptive LMS
algorithm has been investigated widely in the
literature [3][4]. It is shown that the tracking Mean
Square Error (MSE) results from the tradeoff
between the gradient part which is µ -increasing and
the lag contribution which is µ -decreasing. The
decoupled character of the gradient and the lag errors
in the case of linear filter is proved in [5].

However, in the non linear case and more precisely
the second order Volterra filter [6][7], few number of
papers dealing with the convergence analysis of the
LMS adaptive algorithms were presented and limited
only to the stationary environment [8]. The aim of
this paper is the study of the convergence of the LMS
second order Volterra filter. In a first step, we present
a quantitative evaluation of the Excess Mean Squar
Error and in a second step, the optimum value of the
step-size is derived.

2.THE LMS ADAPTIVE NON LINEAR
FILTER

The general nonlinear filtering problem may be
represented by a second order Volterra series [8] of
gaussian input x n( ) and zero-mean output y n( ):
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Rx  denotes the N by N autocorrelation matrix of

x n( )  i.e. [ ] ( ),R r j ix i j x= − . A and B  are

respectively the linear and quadratic filter operators.
According [8], and assuming the hypothesis of a
Gaussian input, its shown that the linear and
quadratic filter weights which minimize the mean
square error between filter output y(n) and desired
output s(n) is given by

A R Rx sx0
1= −  and   B R T Rx sx x0

1 11 2= − −( / )      (5)
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[ ]r i E s n x n isx ( ) ( ) ( )= −  and

[ ]t i j E s n x n i x n jsx ( , ) ( ) ( ) ( )= − −                 (8)

Then; the LMS algorithm for the adaptive Second
order Volterra filter is given by [8]:
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Where e n y n s n( ) ( ) ( )= −  denotes the residual
error of the filter. µ A  and µBare the step size of the
algorithm, they determine the rate of adaptation of
the linear and quadratic filter part. The LMS
algorithm is considered as a stochastic variant of the
steepest descent method [1] by assuming the
independence between A(n), B(n) and X(n).

µ A <1/λmax and µB<1/λ2
max  are the algorithm

stability conditions in a stationary environment
[1][5][8]. λmax  is the largest eigenvalue of Rx .

3.EVALUATION OF THE EXCESS MEAN
SQUARE ERROR IN THE TIME-VARYING
CONTEXT

Let's now examine the ability of the LMS algorithm
to operate in a non stationary environment. Assume
that the linear and quadratic optimum filter weights
vary following:
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( )σNSA A n2
0= cov ( )∆  and ( ) σNSB B n2

0= cov ( )∆
are defined as the scalar covariance of the filter
increment standard diviation. Then the LMS
algorithm has the task not only seeking the minimum
point of the error performance surface but also
tracking the continually changing position of this
minimum point. Since gradient and lag errors are
decoupled [5] and according to the procedure used in
[8], the total MSE is:

J n J j n j nA B( ) ( ) ( )min= + +                       (11)
where:

( )J e nmin cov ( )=  if we omit the additive noise.
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The evaluation of the steady-state MSE for the

linear part, i.e. ( )j j nA
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In a similar fashion, we shall evaluate now the
steady-state MSE for the quadratic part, i.e.

( )j j nB
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lim ( ) . Hence by using (9)(10) and (15),
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which can be reformulated as follows:
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where

W n e n X n X n R B n RT
x x( ) ( ) ( ) ( ) ( )= −2 ∆     (19)

Assuming that the measurement noise is
uncorrelated with ∆B n( )  and ∆B n0 ( )  is
uncorrelated with the inputs X n( )  and with ∆B n( ) ,
this gives:
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Where the matrix norm of a given matrix A is
denoted by A  and defined by the quantity:

[ ]A tr AAT= ( )
2
.

In the steady state of the adaptation, and assuming
slow time variation of the optimal filter weights, we
can assume that :

[ ] [ ]E B n E B n∆ ∆( ) ( )+ =1
2 2                       (21)

In addition, for µ λB << −
max

2
 , it can be proved

[8] that:
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Furthermore, by using the asymptotic assumption
B n B n( ) ( )= 0  , W n e n X n X nT( ) ( ) ( ) ( )= , the
independence between e(n) and x(n), and the
hypothesis of a Gaussian input, it results:
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The second term of the right hand side of (22) may
be evaluated by:
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Note that the second term of the right hand side of
(25) is the nonlinear Excess MSE Lag caused by
variation ∆B0 of B n0 ( ) . The first term corresponds
to the stationary gradient misadjustment [8]. The
resulting expression of the total steady-state Excess
MSE is given by:
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In this simplified expression for the steady-state
Excess MSE, the contribution of the gradient
misadjustment and the tracking error are well
characterized. Clearly, there is an optimum of the
adaptation step size when µ µ µA B= =  which is:
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Note that this optimum is exact only in the case of
slow variation [9]. The dependence between the
Excess MSE and the optimum step-size in one hand
and the parameters of the time-varying nonlinear
system, in the other hand, can be studied.

4. COMPUTER SIMULATIONS

In order to illustrate the performance of the
algorithm, we have performed extensive computer

simulations. The adaptive LMS filter was used to
estimate a second order Volterra system with
gaussian input xk  and output yk  in a non stationary
and noisy environment:

y x x x x x x

n
k k k k k k k

k

= − + + −
+

− − −08 0 5 0 7 01 0 41
2

1
2

1. . . . .

      
For all the experiments, the signal-to-noise ratio is

defined as: SNR dB = 10 2 2log( / )σ σy nk
. σnk

2  is the

variance of the additive noise nk . µ µ µA B= = .
The norm of the coefficient-error vector defined as :

Er(dB):10
2

2
log( / )Θ Θ Θ−

∧

 is plotted in Fig 3 versus

time iterations for different 'variance of the non
stationarity' σNS

 (θ is a vector containing all the time
varying weights).

Fig.2 shows that the theoretical and experimental
Excess MSE versus step-size are in quite good
agreement. The theoretical total Excess MSE is
plotted in Fig.1 versus step-size µ  and in Fig.4 for
different input powerσx

2 . The optimal step-size is
plotted in Fig.5 versus minimum MSE J J0 = min .

5. CONCLUSION

In this paper, we have studied the steady-state
performance of the adaptive second order Volterra
filter controlled by the LMS algorithm, with constant
step-sizeµ , in a time-varying context. We have
provided a method to determine a quantitative
evaluation of the steady-state Excess MSE. The
optimum step-size for time-varying second order
Volterra filter is then given. Extensive computer
simulation have been performed and show the
correlation between the Excess MSE and the
optimum step-size in one hand and the parameters of
the time-varying nonlinear system, such as input
power, variance of non stationarity and step size, in
the other hand. These results are exact in the case of
a slow non stationarity. Further works concerning the
analysis of the nonlinear LMS algorithm in the non
stationary context need to be done. Note that the
independence between the spectral characteristics of
the input signal and the convergence behavior of the
LMS algorithm imposes a bound on the step-size of
the algorithm depending on the eigenvalue spread of
the autocorrelation matrix of the input signal.
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Fig.2: Theoretical (__) and experimental (��) Excess MSE
versus step-size. (SNR=25dB, σx
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Fig.5: Optimal step-size versus min MSE J0  for
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