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ABSTRACT
In this contribution we address the problem of motion
and structure estimation of objects that fit a
deformation model. Our purpose is to provide a
suitable input to a recognition system directed at
detecting particular shapes and deformation patterns
(gestures) of the object. This is accomplished by
means of a stereoscopic vision system which first
reconstructs 3D tokens -points- from the images; then
the tokens are tracked independently in order to
obtain an improved estimation of their positions and
to keep a correspondence among them in consecutive
instants of time. Finally the tokens are matched to an
allowed state -shape- of a Finite State Machine which
depicts the deformation of the body. Rigid motion is
considered to relate the actual tokens positions with
the estimated shape. This approach provides with a
convenient way to deal with incomplete collections of
measurements due to occlusions.

1.- INTRODUCTION
Motion and structure estimation of 3D objects is a
key issue in computer vision and related fields.
Although rigid objects have received a great deal of
attention for many researchers [1] leading to many
algorithms and results, this has not been the case
with deformable (non-rigid) objects. Nevertheless,
most objects in our world possess some kind of  non-
rigidity and modern computer vision systems must
take this circumstance into account. In this
contribution we address the problem of motion and
structure estimation of non-rigid objects when some
kind of  a priori information about the objects is
known. Our purpose is to use the estimated
information of structure and motion in coding both
the deformation and global motion of the body under
study. This coding should be easy to use as the input
to a recognition system intended to command several
tasks. One promising approach to this problem is to
establish a parametric model for the different shapes
of the 3D object[2] : for each different shape there is

a one to one mapping to a minimal set of parameters
satisfying that smooth variations of the shape should
lead to smooth variations of the parameters; we will
call configuration to a particular set of parameters. A
sensing device obtains a collection of measurements -
geometric primitives- related in a functional way to
the parametric model ; then the model is fitted to
these measurements by means of global optimization
techniques. A general model for the measurement
equation could be :
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where n is the current discrete-time, αα is the
parameters vector, f is a vector valued function of the
parameter set which translates the configuration into
the measured coordinates (usually cartesian) referred
to a reference system intrinsic to the body, R is a
rotation matrix and t is a translation vector which
represent the motion of the shape from a standard
position to the actual position in the space, w is a
noise vector due to the measurement process and H is
the measurement matrix which selects the tokens that
are actually measured (for example, if the tokens
were points some of them are occluded by the body
and they cannot be measured). Therefore, our
concern is to obtain an estimation of vector αα
(structure estimation) and matrix R and vector t
(motion estimation) from the measurements z in each
instant of time n.

There are some drawbacks in this approach :
First the optimization loop does not guarantee not to
get trapped in false minima, second the convergence
can be very slow making difficult a real-time
implementation, third occlusions lead to incomplete
descriptions of the shape and it is not easy to control
which possible solution the algorithm will converge
to. These drawbacks can be somehow alleviated
considering the smoothness condition stated
previously and performing a tracking of the
parameters through time; then, at each instant of
time, the optimization process is fed by the predicted
parameters. In this paper we try to provide an



alternative framework to this problem with the aim of
obtaining a real-time recognition system suitable for
many kinds of objects.
2.- A MODEL-BASED STEREO FRAMEWORK
TO ESTIMATE STRUCTURE AND MOTION

Two cameras operating in a stereoscopic
manner are used as sensors with the aim of
simplifying the solution of eq. 1 using 3D data
instead of 2D data from monoscopic images. We call
tokens to the geometric primitives of the object which
are measured. The selected collection of tokens is
useful to depict the configuration of the body only if
we can get the parameters vector αα from them. For
example, articulated bodies can be considered formed
by links and joints; a configuration is specified by
angles between links and the tokens can be the joints
and the free extremes of the limbs. It is clear that αα
can be obtained from the cartesian coordinates of the
tokens; nevertheless, due to occlusions on the images
some tokens are lost and the rest of them can satisfy
many configurations of the body. Note that if the
system is monoscopic the measured coordinates are
related to the 3D tokens by non-linear perspective
projections which besides loose the depth
information.

We propose to model the coherence of the
deformation by a Finite State Machine (FSM),
mapping each structure or configuration of the body
onto a state of the FSM. For each state there are only
some allowed transitions to other configurations. The
FSM represents a quantization of all possible
trajectories in the configurations (parameters) space.
It is possible to obtain a coarse approximation -useful
for some applications- of the deformation with just a
few states, being necessary many states for an
accurate one. There are several reasons to use a FSM:
first, given a set of measured tokens we can obtain
only valid configurations of the model (those
corresponding to allowed transitions from the current
state) ; second, it is feasible to incorporate physical
constraints to the model just pruning some
transitions; third, coding the deformation by a chain
of states is a natural framework to many recognition
tasks; fourth, the ambiguity on the current
configuration due to occlusions is reduced to a few
allowed transitions of the FSM being possible to
develop feasible ad-hoc approaches to the problem;
fifth, the paradigm can be extended to more general
automata (stochastic, fuzzy) which can improve the
matching of collections of tokens to states and the
later recognition process.

Herein we present an approach to estimate
the current state of the non-rigid body based on
tracking some outstanding tokens on the body
surface :
2.1.- The Proposed Algorithm
The algorithm can be split into the following steps :
1)  Select some outstanding patches of the body,
extract them from each image and compute their
centroids; these are our measured tokens and they
must be labeled. As it will be seen this process is
guided by temporal tracking. Note that tokens
extraction is a noisy process.
2)  Reconstruct the 3D cartesian coordinates of the
tokens. A main problem in stereo-vision is that of the
correspondence among tokens in both images; in our
case this problem is overcome by the labeling of the
measured tokens. To label the 2D tokens we consider
the temporal coherence of their motion and other
properties such as color, texture, etc.
3)  A tracking filter can provide improved
estimations of the 3D tokens positions. There has
been an intensive use of Kalman Filters in Vision to
solve this question [4]. The optimality of these filters
rely on some assumptions which are not always easy
to meet. As a feasible alternative in many
circumstances we propose to use simpler constant-
coefficients trackers such as the well-known αβ
filters [5]. These filters operate uncoupledly on each
3D token cartesian coordinate and independently on
different tokens and assume as kinematical model a
deterministic constant velocity motion. The filter
equations (for each coordinate) are :
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 where n is the current discrete time, i stands for
each token number (label), s for smoothed (filtered),
p for predicted for current time in the previous one, r
is the cartesian coordinate (x, y or z), v is the
cartesian velocity coordinate (vx, vy or vz) and z is the
measured cartesian 3D position coordinate. T is the
sampling period and α, β are the filter coefficients.
These coefficients can be chosen by means of an
array of criteria being very application dependent; for
example [6] trades-off noise smoothing and transient
capability. It must be noticed when designing these
filters that noise statistics depend on token positions
in 3D space and are different for each coordinate.
4)  The estimated positions of the tokens must be
matched to a state of the FSM. This problem can be



complicated due to noise and occlusions and it will be
consider later.
5)  We consider a cartesian reference system intrinsic
to the object. Each configuration of the body has a
unique representation of its tokens in this reference
system; in other words, each still configuration of the
body can be regarded as a rigid body and the
mentioned reference system is rigidly attached to it.
Global motion is estimated by fitting this “rigid
body” to the set of 3D measured tokens [3,7].
6)  Predict next discrete time position and velocities
of the tokens. We use a constant velocity motion
model for each point :
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8)  Project the predicted 3D positions onto both
cameras. The next time we will look for tokens inside
correlation gates around the predicted 2D positions.
Time correspondence among measurements can be
readily accomplished by a nearest neighbor algorithm
operating on the tokens inside the correlation gates
and considering the similarity of other properties (as
color) too. Other more elaborated algorithms can be
also employed [5]. Now we go to step one again.
2.2.- Matching Measurements To The States.
Suppose that we have got a body described by NT

tokens and by a FSM with NS states. Due to
occlusions we can obtain only NM measurements
(NM<NT) in the current instant of time; moreover, the
body was in state S0 in the previous instant of time
and according to the FSM it is evolving to any of the
states S0 S1 ... Sp. As it has been previously
mentioned, each state of the FSM is defined by a
parameter vector αα or, alternatively, by the positions
of the whole set of tokens in an intrinsic reference
system. In this section the collection of the current
measurements is referred to this reference system.

An observation vector is formed stacking the
current measurements. In the absence of occlusions
the vector is (z1,...zNT)t. The effect of occlusions can
be modeled by multiplicating this vector by matrix H
which extracts the actually measured tokens. The
squared distance between two complete set of
observations can be defined as :
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where D is a symmetric, positive-definite weighting
matrix. If we had two incomplete set of observations
Hz and H’z’ the distance evaluation is constrained to
the common measurements.

To decide to which state the current observation
vector (possibly incomplete) belongs we compute the
distance between the ideal positions of the complete
set of tokens of each possible configuration and the
current observation vector. If any of those distances
drop below a determined threshold the corresponding
state is matched. Note that due to occlusions several
states can be satisfied. These states could be
incompatible among them (in the sense that each
different selection would lead to a different
deformation of  the part of the body which is seen)
and then the decision should be deferred until new
observations throw more light on the subject. A
different situation arises when the ambiguities lead to
different possible shapes in the occluded side of the
body; in this case it is better not to choose a
determined state but to consider that any
configuration is possible where we are not seeing
what is going on.

3.- EXPERIMENTS
Now we present an application of the previous

ideas to the problem of estimating the global motion
and sequence of states of a computer simulated hand.

The hand is formed for the plane of the palm and
four  common fingers and a thumb that stem from it.
Each of the four fingers are characterized by the tip,
two interfalangeal joints with one degree of freedom
(extension/flexion) and a joint connecting the palm
and the finger with two degrees of freedom (ext/flex
and abduction). The flexion/ extension motion is
performed in planes orthogonal to the palm and by
self-inspection it can be seen that the angles for both
interfalangeal joints use to be similar. The abduction
separate the fingers and defines the flexion plane.
When totally extended these fingers are in the plane
of the palm. Notice that each finger can be
considered as a planar articulated stick moving in its
flexion plane and that this plane is defined to be
orthogonal to the palm and containing the tip and the
palm joint of the finger. The thumb has one
interfalangeal joint (ext/flex), one finger-palm joint
(ext/flex) and a joint near the wrist and not visible
with two degrees of freedom (ext/flex and abduction).
For each abduction there is a flexion plane for the
thumb which is not orthogonal to the palm;
moreover, when the thumb is extended it is not
contained in the plane of the palm (note that the
thumb place against the other fingers). It is possible
to define an intrinsic reference system for the hand
with axes X in the plane of the palm, axes Y



orthogonal and going towards the inside of the palm
and Z = XxY. We consider that the hand only has
global or deformation motion at a time.

In each instant of time we have measurements of
the positions of the tips of the five fingers and of the
joint linking the palm to the thumb. We assume that
we also have measurements of some fixed points on
the palm which determine its plane and the intrinsic
reference system. We consider that the joints linking
the four common fingers to the palm remain fixed in
the palm and therefore we know their position in
each instant of time.

The flexion of each finger is modeled by a FSM
whose states are defined by the quantized angles at
the three joints (0, π/6, π/3, π/2 for each joint).
Transitions are allowed only for adjacent states. The
four common fingers only need two parameters to
represent their state because two joint angles use to
be similar. The abduction is discretized to two
possible values (0, π/4) corresponding to two flexion
planes.

Several continuous deformation patterns have
been simulated corresponding to some gestures of the
human hand. The previously mentioned
measurements have been corrupted with gaussian
white noise. These measurements are reconstructed,
filtered and referred to the intrinsic reference system.
Then the plane of the palm is fitted to the
measurements and the abductions angles are obtained
projecting the tips of the fingers on this plane; for the
thumb this is achieved from the measured joint.
Finally, a flexion state is matched for each finger.

As an example, figure 1 shows the possible
positions of the tips of the first finger (index) in its
flexion plane for each of the sixteen states. The
horizontal axes is contained in the palm plane and
the palm-finger joint is in (0,0). We consider the
hand making a fist in a time second and a sampling
frequency of 25 frames/sec. The solid line links the
states corresponding to this deformation and the
dotted lines represent possible transitions from these
states. Figure 2 shows the real temporal sequence of
states (solid line) and the detected sequence for a
typical case with a noise with standard deviation of
10 pixels (dotted line).
 4.-CONCLUSION
In this paper we have presented a general method to
estimate the structure and motion of non-rigid objects
which are able to fit a deformation model. This
method is intended to facilitate the subsequent task of
shape and/or deformation pattern recognition in real-

time. Current work is oriented towards the extension
of the FSM to more involved paradigms which are
able to incorporate physical constraints and
preferences on the deformation patterns in an easier
fashion. Major interest is placed in the development
of articulated models to code hand gestures and gait.
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