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ABSTRACT

In this paper a simplified design of linear-phase proto-
type filters for almost perfect reconstruction modulated
filter banks will be presented. It is based on an improved
frequency-sampling design where the frequency response
of an easily designable Nyquist filter is shaped such that
the prototype constraints will be approximately satis-
fied. This method does not involve any coefficient opti-
mization and results in a computationally more efficient,
faster and more stable design process, which is especially
well suited for longer filters.

1 INTRODUCTION

Several methods for designing linear-phase prototype-
filters for almost perfect reconstruction modulated filter
banks have been developed up to now.

In [1, 2, 3] a nonlinear error function in the frequency
domain is constructed, which is then minimized us-
ing an unconstrained optimization algorithm. Recently,
Nguyen proposed an improved design method [4], where
additional time domain constraints are introduced into
the design process. However, in nonlinear optimization,
the objective function to be minimized exhibits many
local minima. Thus the properties of the resulting filter
highly depend on the quality and also on the availability
of an optimization algorithm. Another disadvantage is
the large computational cost being connected with these
methods.

Design methods, which are avoiding any nonlinear op-
timization, suffer from other drawbacks. Closed form
designs like [5] are easy to compute, but they often lack
design flexibility, since design parameters like transition
bandwidth and stopband / passband weighting cannot
be chosen independently. The approach described in [6]
is based on a Remez design and yields equiripple filters
with good stopband attenuation, but does not allow to
specify the transition bandwidth for the design. Like the
method in [7], which is based on frequency sampling, it
is only restricted to wider transition bands.

In this paper, a simple method for designing linear-
phase approximate square-root Nyquist prototype FIR
filters for M-band almost-perfect reconstruction modu-
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lated filter banks is proposed, which is related to [7] but
is based on an improved frequency-sampling design.

2 PROTOTYPE FILTER SPECIFICATION

The frequency response H(e/?) of an ideal real-valued
square-root Nyquist lowpass prototype h(n) satisfies
the following conditions, where K = 2M for cosine-
modulated filter banks with M real subbands [1, 2, 3, §]
and K = M in the complex modulated M-band case [5]:
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The exact power-complementarity between the proto-
type and its shifted version for 0 < © < 27/K in
(1) removes all amplitude distortion, and the infinitely
high stopband attenuation of the lowpass prototype for
|| > 27/ K suppresses all aliasing components between
non-adjacent subbands, where aliasing in adjacent sub-
bands is cancelled out by the filter bank itself. However,
FIR filters cannot satisfy the infinitely high stopband
attenuation in (2) and linear-phase FIR filters addition-
ally cannot exactly satisfy the power-complementarity
constraint, so that additional distortion is introduced to
the output of the filter bank.

3 DESIGN PREREQUISITES

For convenience we define S = (N — 1)/2, where N de-
notes the filter length. If h(n) = h(N — 1 — n) holds
for an arbitrary linear-phase filter h(n), then its fre-
quency response is given by H(e/?) = Hy(e/?)e 759,
where Hp(e’?) denotes the real-valued symmetric am-
plitude response. We show now that Hy(e’?) can be
expressed by cosine modulation of the filter coefficients
h(n), where we limit ourselves to odd-length filters.
However, the solution for even-length filters is analo-
gous.



The amplitude response of a linear-phase filter h(n)
can be written as

Ho(e’?) = hTe(Q) (3)
with the length (N + 1)/2 vectors
h = [2h(0),2h(1),...,2h(S — 1), h(S)]T (4)

and  ¢(Q) = [cos(SQ), cos((S — 1)9),...,1]T.

Since h(n) is linear-phase, the sampled amplitude re-
sponse Ho(k) = Ho(e?), Qp = 2T’Tk:, k=0,...,L-1,
shows the symmetry Hqo(k) = Hso(L—k), where L de-
notes the number of sampling points in the frequency
domain. Thus, it is sufficient to consider only the first
L/2 + 1 frequency samples. With

h = [H(0),Hyo(1), ..., Hyo(L/2)]"
and the DCT-I matrix

C = [c(0), c(2/L), -+, e(m)]" € RE/ZFDX(ET),
()
the sampled amplitude response is given in matrix no-
tation by

h = Ch. (6)

Similarly, it can be shown, that the inverse DFT is given
by

hI:CTflla (7)
where
S L foy i=0,i=1L/2,
h; = Dh, [D]w—f{%zjz’zl,.--,L/2—1a ®

j=0,...,L/2; §;; denoting the Kronecker symbol and

hy = [h(0),h(1),...,R(S)]". (9)

4 DESIGN METHOD

The design procedure to be proposed here is based on a
frequency-sampling design, where the desired frequency
response is constructed such that it can be represented
almost exactly by a linear-phase FIR filter [9]. This
process can be summarized as follows:

1. Design of a for the present arbitrary linear-phase
FIR filter g(n) with frequency response G (e/??).

2. Modification of G(e/®?) such that the constraint (1)
is approximated in a least-squares sense.

3. Inverse discrete Fourier transform of the sampled
modified frequency response yields the impulse re-
sponse of the desired prototype filter h(n).

4.1 Odd-length filters

Starting point is the design of a linear-phase K-th band
or Nyquist(K) FIR filter g(n) of odd length N and
transition bandwidth b,, where its amplitude response
Go(e’%?) satisfies the flatness constraint

K-1
Y Go (ef<9—k'2”/K>) ~ 1. (10)
k=0

The design of such a Nyquist(K) filter with transition
bandwidth b, (0 < by, < 2r/K) and filter length N can
be carried out e.g. with an eigenfilter approach [8], which
is used throughout this paper and has been chosen, since
it offers more design flexibility. However, it is possible
to use other design methods for g(n) here.

The amplitude response Hy(e’*?) of the desired zero-
phase square-root Nyquist filter is now represented by

= (T % LB o

for Q, <|Q| <,

with Q; = 27/ K +b,/2, where ) denotes the stopband-
edge frequency. The DCT matrix C in (5) can be di-
vided into two submatrices C; and C, according to
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where C; € RY"*(5+1) I, = [Q,L/(27)], contains the
lower and Cy € RY>*(S+) [y = L/2 4+ 1 — Ly, the

upper frequency rows of C, respectively. With (3) and
(6) eq. (11) can now be written as

ﬁ:{\é(z—lgg], (12)

where g arranged as in (4) denotes the Nyquist(K) FIR
filter sequence and h the sampled amplitude response of
the resulting square-root prototype. The product C;g
yields the amplitude response for frequencies up to the
stopband edge and Cs,g in the range Q € [, 7], respec-
tively.

Combining eq. (8) and (12) and rearranging of the
weighting matrix D yields

fl . Dl\/ Clg D= D1 0
1= D2C2g ’ - 0 D2

and D, € RLIXLI, D, € RL2xL2,

Introducing the inverse transform (7) leads to the de-
sired impulse response vector hy in (9), which can be
written with CT = [C] CT] as

h; = CTDl vCig+ C;FD2C2g. (13)

Note that the square-root in (11) and (13), resp.,
is only calculated in the pass- and transition band up
to the stopband edge, where Gg(e/?) is always posi-
tive. Thus, in the resulting response Hy(e/*?), the stop-
band edge is moved only slightly to higher frequencies,



which results in a nearly unchanged transition band-
width b, ~ b, in comparision to that specified in the
original Nyquist(K) filter design.

Since the eigenfilter design is optimal in the least-
squares sense, the transfer function Gy (z) exhibits single
almost equidistant zeros on the unit circle in the stop-
band region. Thus, by choosing Hy(e/?) = Go(e’) in
the stopband region, this structure can be retained in
the resulting prototype filter, which leads to maximum
stopband attenuation.

4.2 Even-length filters

Unlike in the odd-length case, here it is not possible to
start with the design of a Nyquist(K) filter, since even-
length linear-phase filters cannot satisfy the Nyquist
condition (10) due to the even symmetry in their im-
pulse response. However, it is possible to design an
even-length lowpass filter g(n) = go(n — S), which ap-
proximately satisfies the reduced frequency-domain con-
dition
, . 1 0< <2,
Go (eJQ) +Go (e]m QW/K)) - {arbitr. elsewhere.K
(14)

This can be realized by including this flatness constraint
into the objective function of an eigenfilter design [8],
which shall be explained in the following. The main
idea behind the eigenfilter design is to minimize an ob-
jective function, where the minimization process can be
expressed as an eigenvalue problem.

The stopband energy can be written with a vector
notation for even-length filters similar to (3), (4) as

B~ [ Gy~ g"Pg (15)
Qs

with P :/ c()cT(Q) dQ € RN/2XN/2
Qs

c(Q)=[cos(SN), cos((S—1)Q),...,cos((S=N/2+1)Q)]T
and should obviously be minimized in order to achieve
maximum stopband attenuation.

The deviation from the relaxed condition in (14) can
be expressed in terms of an energy E; as

B = /027r/K {1 Gy (ejQ) — G, (ej(Q—%T/K))]Q 0

and should be zero in the ideal case. Introducing again
a notation as in (3), (4) yields the matrix formulation

E;=g'Qg (16)
with

2r /K
Q= [ @-e(®-ci(®) 1-c(@)-ei()" a2,
0
where ¢; () denotes the length N/2 vector of modulated
cosines
ci1(Q) = J[cos(S(2—2n/K)),cos(S(Q—27/K) — 1),
oyc08(S(Q —27/K) — N/2+1)]*

and 1 the unity vector of the same length.
The composite objective function to be minimized is
now given by [§]

p=aFE;+(1—-a)E; L min .,

where o, 0 < a < 1 allows a weighting between stop-
band attenuation and flatness of the amplitude response.
With (15) and (16) this results in

¢=g'Rg with R=aP+(1-a)Q.  (17)

Since R is positive definit, Rayleigh’s principle can be
applied, stating that the vector g, which minimizes ¢, is
the eigenvector corresponding to the smallest eigenvalue
)\0 of R [8]

The further design of the desired square-root
Nyquist(K) prototype is again carried out according
to eq. (13) with the modifications Ly = L/2 — L; and
D, =1 due to the even prototype filter length.

5 DESIGN EXAMPLES

As a first example, a prototype filter of length N = 512
with K = 64, « = 0.9 and a transition bandwidth of
by, =~ 0.037 is designed, where the number of sampling
points is chosen as L = 1024.
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Figure 1: Design example with N = 512 and K = 64:
(a) Magnitude frequency response, (b) Period of the
overall transfer function.

Fig. 1 shows the magnitude frequency response
and one period of the overall magnitude trans-

fer function |T(e/?)| =Y r ' |H(eJ'(Q*’“'2’T/K))|2 for



0< Q< 27/K. Note that the stopband attenuation
is getting larger for increasing 2, which is useful when
processing signals with (mainly) lowpass-shaped power
spectra. Such a shape of the stopband response leads
to a better suppression of high-energy lowpass aliasing
components in the upper subbands.
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Figure 2: Design example with N = 129 and K = 16:
(a) Magnitude frequency response, (b) Period of the
overall transfer function, (c) Zero-pattern.

This can also be observed in the next example, where
an odd-length prototype with N = 129, K = 16,
bp =~ 0.1r, L = 1024 and a = 0.5 is designed (Fig. 2).
The zero-pattern shows that the single zeros in the stop-
band region of the unit circle are distributed almost
equidistantly, corresponding to minimal stopband en-
ergy E;.

6 CONCLUSION

The design procedure presented in this paper does not
depend on a computational expensive optimization rou-
tine. This results in a faster and more stable prototype
computation, especially for longer impulse responses,
where optimization-based approaches often lead to in-
adequate filters.

Additionally, this method allows an easy implementa-
tion. The eigenvector and eigenvalue computation rou-
tines for example, which are needed for the first design
step, can be found in many numerical packages and li-
braries.
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