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ABSTRACT

A realization of the Modified DFT (MDFT) filter bank in-
troduced in [1, 2, 3] was proposed in [4]. The analysis and
synthesis filter bank consist each of two DFT polyphase filter
banks, one without delay and one delayed by M/2 samples
where M represents the number of channels of the MDFT
filter bank.

In this paper, we will show that the two DFTs can be reduced
to a single one for prototypes of the lengths N =r- M + 1
and N =r-M+ M/2+1, respectively, by doing some simple
combinations with the input signals. Hereby the modulation
cost is nearly halved.

1 INTRODUCTION

As shown in Fig. 1, the MDFT filter bank can be derived
from a complex modulated filter bank by decimating the
sampling rate with and without a delay of M /2 samples and
using either the real or the imaginary part, respectively, in
the subbands. With these modifications, all odd alias spectra
including adjacent channel aliasing are cancelled. Perfect
reconstruction is achieved with prototypes which are also
used for cosine modulated filter banks with half the number
of channels [3].
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Figure 1: Modified complex modulated filter bank

The causal analysis and synthesis filters Hy(z) and Fi(z),
respectively, are complex modulated and time shifted ver-
sions of a symmetrical, real valued, zero-phase, lowpass pro-
totype P(z) with bandwidth 27/M (including positive and
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negative frequencies).

N -1 Ch(n_N—1
hi(n) = fi(n) =p(n — ——) - W Hnm ),
n=0,....N—1, k=0,...,M—1,

W —exp( I )

As was shown in [4], the MDFT filter bank can be real-
ized by two DFT filter banks where one is delayed by M/2
samples (see Fig. 2).
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Figure 2: MDFT filter bank realized by two DFT polyphase
filter banks

The input signal z(n) is complex valued. Gy (z) and Gy, (2)
represent different types of the k-th polyphase filter of the
lowpass Ho(z).

gr(m) = ho(m-M +k)
gr(m) = ho(m-M —k)
Nz_lk'

The multiplications of the subband signals with W
are due to the assumption of causal analysis and synthesis
filters.

2 COMPUTATIONALLY EFFICIENT REALIZA-
TION

For certain filter orders, the operations between the analysis
and synthesis filter banks’ DFTs can be simplified leading to
a significant reduction of the modulation cost:



o N=r-M+1: here, W5 ¥ = (—1)k".
This leads to the structure given in Fig. 3a.

o N=r-M+M/2+1: here, W-T % = (—1)*" . (—j)*.
We obtain, after minor modifications, Fig. 3b, where
the subband signals’ signs have been adjusted appropri-
ately. From Fig. 3b, the filter banks proposed by Prin-
cen and Bradley [5] where r is limited to one and by Lin
and Vaidyanathan [6] can be derived. Apart from the
efficient implementation of the modulation (which will
be shown in the sequel) the realization in Fig. 3b offers
the advantage that complex valued signal processing is

possible.
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Figure 3: MDEFT filter bank for prototypes with lengths
a) N=r-M+landb) N=r-M+M/2+1

Although there are M complex values at the input of each M
point IDFT of the analysis filter bank, just the real or imagi-
nary part is required in each subband. Instead of calculating
the complex subband signals by two M point IDFTs and dis-
missing one of the real and imaginary parts, we will calculate
the required M real parts and the M imaginary parts by one
M point IDFT, only. For this purpose, we will exploit some
properties of the discrete Fourier transform. The necessary
modifications will be shown with the analysis filter bank in
the case N=m-M + 1 and M = 4.

1. In afirst step, we exploit the DFT’s property concerning

a time shift of M /4 samples of the input signals:

IDFT{#(k)} = IDFT{z((M/4+k))m }
1 ﬂ'kM
- e )
(=) )

= 7 vk =

where ((M/4+k))n stands for “(M/4+k) modulo M”,
Z(k) for the k-th input signal of the M-IDFT operation
and g(k) for its k-th output signal, see Fig. 4.

Taking the real part of the transformed sequence fo,
k=0,---,M — 1 with the upper, undelayed branch of
the analysis filter bank and the imaginary part with the
bottom, delayed branch, ¢, we obtain the original sub-
band signals apart from the sign and a multiplication
with j. Fig. 4 clarifies this step.
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Figure 4: 4-channel MDFT analysis filter bank after the
modifications described in item 1

2. At the output of the IDFTSs, either the real or the

imaginary part of the transformed sequence is required.
To save the calculation of the irrelevant part, we
combine the upper and lower input sequences into con-
jugate even and odd sequences, respectively (see Fig. 5).

Re {for} = 3[Gor + To.0r— k)
=M -IDFT {4 [Zor + 5 ar—4)} = M - IDFT {Zcx }
JIm {Gue} = 5 [Gue — F1e]
=M -IDFT {[&1x — ] ar_4)} = M - IDFT {Zo1}

. As the upper output sequence is a purely real signal

and the lower one is purely imaginary valued, both se-
quences can be jointly calculated by adding the input
sequences. Accordingly, the complex output sequence
corresponds to the sum of the output sequences that
have been calculated separately so far.

. In order to obtain the original subband signals we have

to undo the time shift introduced in step one after the
addition of the upper and lower input sequence. Steps
three and four are shown in Fig. 6.
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Figure 5: 4-channel MDFT analysis filter bank after the
modifications described in items 1 and 2
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Figure 6: 4 channel MDFT analysis filter bank after the
modifications described in items 1 to 4

For N =m-M+ M/2+1, we have to implement the steps
2 and 3, only.

All even order prototypes can be adapted to the above
cases by appropriately padding their impulse responses with
zeros so that the main impulse of the convolution of the
lowpass filter ho(n) with itself is placed at time lags r - M
and r - M + M/2, respectively.

3 COMPARISON OF THE MODULATION
CcOoSsT

With the original polyphase realization of the MDFT filter
bank given in Fig. 2, the modulation cost in the analysis
filter bank is given by the number of operations within the
two IDFTs. According to [7] the number of real additions
amprr(M) and multiplications pyprr(M) is

auprr(M) = 2-(3-log, M —3+4/M)fs,
parprr (M) 2 (logy M —3+4/M)fs

where f, denotes the sampling rate. The input signal is
supposed to be complex valued.

For the improved realization in Fig. 6 the modulation cost
consists of the operations necessary for building the conju-
gate odd and even parts of the input signals, adding the two
input sequences and performing one IDFT. Here, we obtain
the following number of the required real additions and mul-
tiplications:

amvprr (M) = (3-logy, M +3)fs,
pvprr, (M) = (logoa M —3+4/M)fs.

In the cosine modulated filter bank the modulation is done
via an M point DCT-IV. Here, in case of a complex valued
input signal, the number of real additions and multiplications
equals [7]

apcr(M) = (3logy, M)fs,
poor(M) = (logy M +2)fs.
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Figure 7: Comparison of the modulation costs

Fig. 7 compares the modulation costs necessary with
the three realizations: MDFT (according Fig. 2), MDFT;
(Fig. 6) and DCT-IV. In all cases the modulation cost grows
with O(log M) but the improved realization of the MDFT fil-
ter bank has the lowest number of multiplications required.
It is thus favorable for architectures where multiplications
are more expensive than additions.



4 IMPLEMENTATION OF THE POLYPHASE
FILTERS

So far, only the modulation complexity has been regarded.
We have shown how to fit the two IDFTs into a single
one. However, each polyphase filter still has to be realized
twice. Having a closer look at the input sequences after sub-
sampling, we see that the two polyphase filters G;(z) and
G((k+M/2)),, (2) are fed with the same input signals apart
from a possible delay. Therefore, we can use the same delay
chain for both FIR filters, see Fig. 8.

For MDFT filter banks with perfect reconstruction these
two polyphase filters are paraunitary and can be realized by
the lattice structure proposed in [8].
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Figure 8: Joint realization of two polyphase filters

5 REAL SIGNAL PROCESSING

Up to now, we have assumed complex valued input sequences
and have shown that the MDFT filter bank offers a very effi-
cient realization in this case. However, in practical applica-
tions the input signals are often real valued. If there is more
than one signal to be processed, we can build a complex
input signal from two independent real signals by mapping
them into the real and imaginary parts, respectively. In or-
der to encode the signals separately we wish to have the same
mapping for the subband signals. Unfortunately, the MDFT
filter bank maps the real part of the input signal into both
the real and the imaginary part of the subband signals [1, 2].
Therefore, we have to perform the operations described in
Fig. 9 in order to get real (imaginary) subband signals for
the real (imaginary) part of the input sequence.

6 CONCLUSION

In this paper we have shown that the modulation cost can be
reduced significantly for analysis and synthesis filters of the
lengths N =r-M +1and N =r-M + M/2+1, respectively.
Each odd length prototype fits into these cases if its impulse
response is properly filled up with zeros. Compared with
[4], the modulation overhead is nearly halved. The proposed
realization is efficient especially for complex valued input
signals but can be adapted to real valued signals, too.
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Figure 9: MDFT filter bank with normal subband signal
mapping
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