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SUMMARY Extended optimum interpolatory approxi�
mation is presented for a certain set of signals having n vari�
ables� As the generalized spectrum of a signal� we consider
a ��dimensional vector� These variables can be contained
in one of the time domain� the frequency domain or the
time�frequency domain� Sometimes� these can be contained
in the space�variable domain or in the space�frequency vari�
able domain� To construct the theory across these domains�
we assume that the number of variables for a signal and its
generalized spectrum are di�erent� in general�

Under natural assumption that those generalized spec�
trums have weighted norms smaller than a given positive
number� we prove that the presented approximation has
the minimum measure of approximation error among all
the linear and the nonlinear approximations using the same
generalized sample values� Application to numerical simu�
lation of partial di�erential equations is considered� In this
application� a property for discrete orthogonality associated
with the presented approximation plays an essential part�

�� OPTIMUM APPROXIMATION

We denote by Rn and Zn the set of all the real n�
dimensional vectors and the set of all the n� dimensional
integer vectors� respectively� Let X � �x�� x�� � � � � xn� and
U � �u�� u�� � � � � u�� be real vectors in Rn and R�� respec�
tively� Sometimes� the simpli�ed expression n�D vectors
is used for the terms n�dimensional one�
Let P � �p�� p�� � � � � pn� be an integer vector in a subset

	 in Zn� We denote by 
�M� the set of all the vectors
J � �j�� j�� � � � � jn� in Zn the elements of which satisfy
� � jk �mk �mk �positive integer� k � �� �� � � � � n
 M �
�m��m�� � � � �mn���

Suppose that 
 is a subset of 
�M�� In the following�
we assume that K � �k�� k�� � � � � kn� is a vector in 
�
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� � � a Hilbert space of � �D vectors F �U� �
�F ��U�� F ��U�� � � � � F ��U�� � �F ��u�� u�� � � � � u���

F ��u�� u�� � � � � u��� � � � � F ��u�� u�� � � � � u��� ��
k F k� � a norm of F �U� in ��� For example� k F k�qP�

q��

R
R�

j F q�U� j� dU � Note that k F k is a

positive number� and not a vector nor a function of
u�� u�� � � � � u��
�F�G� � � inner product between F �U� and G�U��
where F �U� and G�U� are in ��� For example�
�F�G� �

P�

q��

R
R�

F q�U�Gq�U�dU � Here� �F�G� is
a complex constant� and not a vector nor a function
of u�� u�� � � � � u��
V � � an operator matrix on �� Its range is also ���
V �� � � an inverse operator matrix of V whose do�
main and range are ���
B � � subset of � composed of F �U� satisfying
k V ��F k�� A� where A is the prescribed positive
number��
HK � � operator matrices on � having the range in
�� where K � �k�� k�� � � � � kn� � 
��
We assume that all the operators are bounded and

linear in their domain�
Now� we consider a series of � �D vectors s�U�X� �

�s��U�X�� s��U�X�� � � � � s��U�X�� and sK�P �U� ��s�K�P
�U�� s�K�P �U�� � � � � s�K�P �U�� �K � 
� P � 	� in �� where X
is a parameter vector�
Then� the signals with n variables treated in this

discussion are de�ned by f�X� � �V ��F�s�U�X��
�F � B�� Let � be the set of these signals f�X��

For example� let � � n� Suppose that V �j W �U� j� and
V �� � �� jW �U� j� hold� Also� let �F�G� �

R
jW �U� j�

F �U�G�U�dU�����n and s�U�X� �exp��jUXt�� Then�
above de�nition of f�X� is identical to ordinary inverse
Fourier transform with n variables�
Further� we de�ne �generalized� sample values of f�X� by
fK�P � �V ��HKF� sK�P �U�� �K � 
� P � 	��

The approximation formula is de�ned by

y�X� � �K �P fK�PwK�P �X� ���

For convenience sake� we call wK�P �X� �K � 
� P � 	�

�



�generalized� interpolation functions� The approximation
error between f�X� and y�X� is given by e�X� �j f�X��
y�X� j� Then� the measure of error E�X� is de�ned by

E�X� � sup
f�X���

�e�X�� ���

which means the upper limit of e�X� for all the f�X� in ��
PROBLEM� Assume that V � �� HK� s�U�X� and

sK�P �U� �K � 
� P � 	� are given� Then� derive the opti�
mum wK�P �X� minimizing E�X��

Note that there exists an operator matrix GK on � sat�
isfying �V ��HKV � V ��F�sK�P �U�� � �V ��F�GKsK�P �U��
as a consequence of Riesz theorem�

Now� let X be a �xed parameter vector in Rn� Then�
e�X� �j f�X�� y�X� j can be expressed as

e�X� �j �V ��F�S�U�X�� j ���

where S�U�X� � s�U�X��P
K

P
P
wK�P �X�GKsK�P �U��

Using Schwarz inequality� we obtain e�X� �k V ��F k �
k S�U�X� k� p

A k S�U�X� k� Equality holds when
V ��F��U� � c � S�U�X� is valid� where c �

p
A �

k S�U�X� k� F��U� � F��U�X� � B and X is a parameter
vector� Note that� if F �U� � F��U�� then e�X� � E�X�
holds� Hence� we can easily prove

E�X� �
p
A k S�U�X� k ���

Di�erentiating E�X�� with respect to wM�Q�X� �M � 
�
Q � 	� and putting the resultant formulas into zero� we ob�
tain a set of linear equations for the optimum interpolation
functions wK�P �X� �K � 
�P � 	� minimizing E�X��

�K�PwK�P �X� � �GM �U�sM�Q�U�GK�U�sK�P �U��

� �GM�U�sM�Q�U�� s�U�X�� �M � 
�Q � 	� ���

We assume that the coe�cient matrix has su�cient rank�

�� GENERALIZED DISCRETE
ORTHOGONALITY

Let p � d�K�P � �p � �� �� � � � �m
K � 
� P � 	�
be one to one correspondence between an integer p �p �
�� �� � � � �m� and a pair of vectors �K�P � �K � 
� P � 	��
Further� we assume that the coe�cient matrix of Eqs����
has su�ciently large rank� Then� as is easily proved� we
may consider that the vectors GK �sK�P �U� �K � 
�P � 	�
are independent with each other� Hence� using the Schmidt
orthogonality algorithm� we can derive a set of orthogo�
nal base�vectors fvp�U�g �p � �� �� � � � �m� with respect
to the present inner product from the set of the vectors
fGK � sK�P �U�g �K � 
� P � 	��

vp�U� �

mX
q��

ap�qGM � sM�Q�U�

GK � sK�P �U� �

mX
q��

bp�q � vq�U� ���

where k vp�U� k� �� �vp�U�� vq�U�� � � �p �� q� and
p � d�K�P � �p � �� �� � � � �m
K � 
� P � 	� and
q � d�M�Q� �q � �� �� � � � �m
M � 
�Q � 	�� Further�
ap�q and bp�q �p� q � �� �� � � � �m� are the complex
coe�cients associated with the Schmidt orthogonality
algorithm�

Then� we can obtain

E�X���A �

mX
p��

j rp�X�� �s�U�X�� vp�U�� j�

��s�U�X�� s�U�X���
mX
p��

j �s�U�X�� vp�U�� j� ���

where rp�X� �
Pm

q��
bq�p wM�Q�X�� Further� p �

d�K�P � �p � �� �� � � � �m
K � 
�P � 	�� q � d�M�Q� �q �
�� �� � � � �m
M � 
�Q � 	��
Therefore� we may soon notice that the following rp�X�
minimize E�X��� where p � �� �� � � � �m�

rp�X� � �s�U�X�� vp�U��� �p � �� �� � � � �m� ���

In the following in this section� we assume that the in�
terpolation functions are identical with the optimum those
minimizing E�X� under consideration� Hence� we use the
rp�X� given Eq�����

From Eq����� we can easily obtain

wK�P �X� �

mX
q��

aq�p � �s�U�X�� vq�U��

� �V�� �WK�P �U�� s�U�X�� ���

where WK�P �U� � V �
mX
q��

aq�p � vq�U� ����

Let L be a vector in 
 and let R be a vector in 	� Then�
from Eq���� and Eq����� we can prove

�V ��HL �WK�P �U�� sL�R�U��

� �V ��HLV �
mX
q��

aq�p vq�U�� sL�R�U��

� �

mX
q��

aq�p vq�U��GL � sL�R�U��

� �

mX
q��

aq�p vq�U��

mX
r��

bl �r vr�U�� �

mX
q��

bl �q � aq�p

�

�
� �l � p� that is� �K�P � � �L�R��
� �l �� p� that is� �K�P � �� �L�R��

����

Eq����� shows that the generalized sample values of
wK�P �X� satisfy the generalized discrete orthogonality� As
a direct consequence of Eq������ if f�X� is equal to a

�



linear combination of wK�P �X�� the corresponding y�X� is
equal to f�X�� and E�X� is equal to zero�

�� GENERALIZED SPECTRUM OF y�X�

Firstly� consider the following function of the vector U �

Y �U� � V �
mX
q��

�V ��F� vq�U��vq�U� ����

where vq�U� �q � �� �� � � � �m� are the orthonormal bases
de�ned previously� Then� as direct consequences of Eq�����
Eqs����� ���� and ����� we can prove

y�t� �

mX
p��

fK�P wK�P �X�

� �V ��Y �U�� s�U�X�� ����

Eqs����� shows that Y �U� can be considered as the gen�
eralized spectrum of the approximation formula y�X��

Further� we de�ne

F �U� � Y �U� � ��U� ����

Obviously� ��U� is the generalized spectrum of the net
value of the approximation error ��X� � f�X� � y�X��
Then� we can derive the relation with respect to the gener�
alized sample values and the squared values of the weighted
norms �the weighted energy� of F �U�� Y �U� and ��U��

fK�P � �V ��HK � F �U�� sK�P �U�� �

�V ��HK � Y �U�� sK�P �U��

�V ��HK � ��U�� sK�P �U�� � �

k V ��F �U� k��k V ��Y �U� k� � k V ����U� k�
����

As a direct consequence of Eq������ we can prove that� if
F �U� is in B� the corresponding ��U� is contained in B�

Now� let �� be the set of signals f�X� in � satisfying that
�a� the corresponding generalized sample values
� fK�P ����V ��HK � F �U�� sK�P �U�� are all zero with
respect to all the K �� 
� and P �� 	��
�b� the inequality k V ��F �U� k�� A� where A is the
prescribed positive number�
Further� suppose that �y�X� � v�fyK�P g
X� is a lin�

ear or nonlinear approximation with a parameter X ��
Rn� for f�X� in � using the sample values fK�P �
�V ��HKF� sK�P �U�� �K � 
� P � 	�� We assume that
v�fyK�P g
X� is zero when all the fK�P �K � 
�P � 	� are
zero� Since the error ���X� � f�X�� �y�X� depends on the

signal f�X�� we express the error as ���X� � b	�f�X���
Moreover� let d�X� � 
����X�
X� be an arbitrary kind

of linear�nonlinear approximation error between the signal
f�X� in � and the corresponding approximation formula
�y�X�� where X �� Rn� is the prescribed parameter vector�
Besides� we assume that

sup
f�X����


����X�
X� � sup
f�X����


����X�
X� ����

holds for all the set of signals �� and �� satisfying
�� � ���

The measure of error in this discussion is de�ned as

E�X� � sup
f�X���


����X�
X� ����

d�X� may be a function of the prescribed vector X and
does not necessarily satisfy the axiom of the distance�

Let ��X� � f�X� � y�X�� where y�X� is the proposed
optimum approximation for f�X�� Further� let �� be the
set of all the ��X� � f�X��y�X� �f�X� � ��� Then� as the
direct consequence of Eq������ we can easily recognize that
��X� � f�X� � y�X� � �� � �� holds� Further� if f�X�
is equal to ��X�� the corresponding approximation formula
y�X� � y�X�� is identical with zero� Hence� we can easily
recognize that the following three conditions hold�

�c� �� � �� � �

�d� ��X� � b	���X��
�e� y�X� � � if all fK�XK�P � �K � 
�P � 	� are zero�
Therefore� for arbitrary f�X� in �� we have

E�X� � sup
f�X���

f
����X��X�g

� sup
f�X����

f
����X��X�g � sup
f�X����

f
�f�X��X�g

E��X� � sup
f�X���

f
���X��X�g

� sup
��X����

f
���X��X�g � sup
��X����

n


hb	���X���X

io
� sup

f�X����

n


hb	�f�X���X

io
� sup

f�X����

f
����X��X�g

� sup
f�X����

f
����X��X�g � sup
f�X����

f
�f�X��X�g ����

As shown in Eq������ E��X� is the minimum value of
E�X� � sup

f�X���


����X�
X�� Hence� we can conclude that

the presented optimum interpolation functions minimizes
various E�X� at the same time�

�� SOME APPLICATIONS

Now� we apply these discussions to the �nite orthogo�
nal series� Consider a signal f�X� �

P
P�	�M�

aP �P �X��

where aP �
R


f�Y ��P �Y �dY �P � 
�M��� Also� we

de�ne v�X�Y � �
P

P�	�M�

P
Q�	�M� vP�Q�P �X��Q�Y ��

where �V � fvP�Qg is a positive de�nite Hermitian matrix�
Let v���X�Y � �

P
P�	�M�

P
Q�	�M� v

��
P�Q�P �X��Q�Y ��

where �V �� � fv��P�Qg is the inverse matrix of V � and let

V and V �� be the operators V f � �V f ��X��
R


v�X�Y �

f�Y �dY and V ��f � �V ��f ��X� �
R


v���X�Y �f�Y �dY �

We consider the bilinear form and the generalized norm�
� f� g 
�

R



R


v�X�Y �f�Y �g�X�dY dX and k f k��

f�f 
���� respectively� Moreover� s�Y�X� is de�ned by
s�Y�X� �

P
P�	�M�

�P �X��P �Y �� where X is a parameter

�



vector� Then� we obtain f�X� �� �V ��f ��Y �� s�Y�X� 
�
� V ��f� s�Y�X� 
� Further� let fK�X� � �HKf ��X� �P

P�	�M�

�P
Q�	�M� h

K
P�QaQ

�
�P �X� �K � 
�� where �HK

� fhKP�Qg is a complex matrices�
Now� we consider the sample points in Rn expressed as

XK �K � �k�� k�� � � � � kn� � 
�� The sample values are de�
�ned as fK�XK� �K � 
�� Further� we de�ne sK�Y � by
sK�Y � � s�Y�XK��

P
P�	�M�

�P �XK��P �Y �� Then� we

can obtain fK�XK� �� �V ��HKf ��Y �� sK�Y � 
�� V ��

HKf� sK�Y � 
� Hence� the same analysis is possible�
As the bases of expansion� if an arbitrary �nite or in��

nite set of independent piece�wise polynomials� including
biorthogonal spline wavelets� we can construct the set of
orthogonal system from these functions by the Schmidt s
orthogonalization� This linear coordinate transformation
can be included in the transformation matrix �V ��� Besides�
if the set of shifted piece�wise polynomials� such as spline
wavelets� are used for the bases and continuous partial dif�
ferentiation of a signal is replaced by discrete di�erence with
respect to the unit delay� this process to the signal can be
included in �HKf ��X�� Hence� the presented formulation
can be applied and under the previous assumptions� the re�
sult gives the minimum approximation error among all the
other approximations�

Secondly� we will consider the analysis for continuous sig�
nals� Suppose that Y t is the transpose of a vector or a
matrix Y and Y is the conjugate of Y � Let X 	Y be a vec�
tor �x�y�� x�y�� � � � � xnyn�� where X � �x�� x�� � � � � xn� and
Y � �y�� y�� � � � � yn�� Further� let f�X� � f�x�� x�� � � � � xn�
and

R
��
f�X�dX �

R R
� � �
R
f�x�� x�� � � � � xn�dx�dx� � � � dxn

de�ned for all the X in ��� When a pair of functions f�X� �
� F �U� satis�es f�X� � �

����n

R
Rn

F �U� exp�jUXt�dU �

then F �U� is called the Fourier spectrum of f�X��
Let T � �t�� t�� � � � � tn� and AK � Ak��k� �����kn be real

constant vectors� respectively� AK � Ak��k� �����kn has in�
teger subscripts km �m � �!n� � We assume tk 
 �
�p � �� �� � � � � n� and K � 
� where 
 be the prescribed
�nite set in Zn� Then� the sample points are de�ned by
XK�P � �P 	T�AK�Gt �K � 
�P � Zn�� where Gt � H��

is a real non�singular matrix for the coordinate transforma�
tion� The space Rn is divided into disjoint union of the
polyhedra �i �i � ��
��
�� � � �� each of which is the fun�
damental period of XK�P �

Let V �jW �U� j� and � be the Hilbert space having the
inner product and the norm such as �F�G� � �

����n

R
Rn

jW �U� j� F �U�G�U�dU and kFk � �F�F ����� respectively�
The set of signals� �� is de�ned as the set of all

f�X� which has the Fourier spectrum F �U� satisfying
kV ��F �U�k� � �

����n

R
Rn
j F �U� j� � j W �U� j� dU � A�

where A � �
����nA� is a positive constant�

Now� we consider the domain BK�P satisfying
�f� XK�P � BK�P �K � 
� P � Zn�
�g� BK�Q is identical with the parallel translation of BK�P

along with the vector XK�Q �XK�P �

Moreover� we consider the functions �K�P �X� �K � 
�
P � Zn� satisfying �K�P �X� � � �X �� BK�P 
 K � 
�
P � Zn�� We assume that all the �K�P �X� are bounded�

For each K� let fK�X� be the output of the analysis �l�
ters HK�U�� Then� the approximation of f�X� is de�ned by

y�X� �
X
K�	

X
P�Zn

fK�XK�P ��K�P �X�� where fK�XK�P � are

the sample values of fK�X� at XK�P � K � 
� P � Zn ��
We call �K�P �X� a generalized interpolation function�

Now� let E�X� � supf�X���fj e�X� jg and let S�U�X� �

ejUX
t �P

K�	

P
P�Zn

�K�P �X�HK�U�ejUX
t
K�P � Then�

E�X� is expressed as E�X� � �
����n

p
A��
R
Rn

jW �U� j�
j S�U�X� j� dU ����� Since this equation is almost the same
as Eq����� we can proceed to similar formulation as before�
Hence� we will only present the high light�

�h�Let �K�P �X� be the unique optimum interpolation
functions minimizing the E�X� and let �K�X� be the
functions de�ned by �K�X� � �K���X � AKG

t� �� �
zero vector in Zn�� Then� we have �K�P �X�� �K�X �
XK�P � � �K�X � �P 	 T � AK�Gt�� Note that these op�
timum interpolation functions can be realized by shift in�
variant interpolation �lters�

�i�For the conditions �f� and �g�� here� �K�P �X� do not
satisfy the discrete orthogonality� in general� However�
when the supports of HK�U� are included in a �i� the dis�
crete orthogonality as Eq����� holds� This situation oc�
curs if HK�U� are partial di�erential circuits having the
transfer function

P
P
aP �ju��

p� �ju��
p� � � ��jun�pn �P �

�p�� p�� � � � � pn��� Since the optimum y�X� satis�es the dis�
crete orthogonality� if the sample values fK�XK�P � are iden�
tical with the required discrete initial values� this optimum
y�X� satis�es the corresponding discrete initial values and
gives a favorable approximation of the solution of the par�
tial di�erential equation�

�j�If the interpolation functions satisfy Eq������ the sys�
tem can distinguish each of the coe�cients in the linear
combination of HK� Since HK are given �rstly� this will be
important to radar application�

�� CONCLUDING REMARKS

Although detail is omitted� a linear phase �lter bank
with �� paths� the degree ��� and the attenuation ��� dB is
obtained by this approximation� Other multi�dimensional
numerical programming is future problem�

Finally� we would like to express our sincere thanks to
Professor S� K� Mitra in University of California�
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