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SUMMARY Extended optimum interpolatory approxi-
mation is presented for a certain set of signals having n vari-
ables. As the generalized spectrum of a signal, we consider
a v—dimensional vector. These variables can be contained
in one of the time domain, the frequency domain or the
time-frequency domain. Sometimes, these can be contained
in the space-variable domain or in the space-frequency vari-
able domain. To construct the theory across these domains,
we assume that the number of variables for a signal and its
generalized spectrum are different, in general.

Under natural assumption that those generalized spec-
trums have weighted norms smaller than a given positive
number, we prove that the presented approximation has
the minimum measure of approximation error among all
the linear and the nonlinear approximations using the same
generalized sample values. Application to numerical simu-
lation of partial differential equations is considered. In this
application, a property for discrete orthogonality associated
with the presented approximation plays an essential part.

1. OPTIMUM APPROXIMATION

We denote by R™ and Z" the set of all the real n—
dimensional vectors and the set of all the n— dimensional
integer vectors, respectively. Let X = (z1,z2,...,2,) and
U = (u1,uz,...,u,) be real vectors in R™ and R", respec-
tively. Sometimes, the simplified expression n — I vectors
is used for the terms n-dimensional one.

Let P = (p1,p2,...,pn) be an integer vector in a subset
Ain Z". We denote by A(M) the set of all the vectors
J=1(y1,92,---,Jn) in Z" the elements of which satisfy
1 < jx < my (my =positive integer, k =1,2,...,n; M =
(m1,ma2, ..., my)).

Suppose that A is a subset of A(M).
we assume that K = (ki,kz,...,kn) is a vector in A.

Also, we use the following notations.

ZP:ZPIZPQ"'an (P:(Plap2,~~~,Pn)€A).
ZK = Zkl Zk2 an (K = (k1,k2,...,kn) EA).

= =[ a Hilbert space of v — D vectors F(U) =
(FLU), FA(U), ..., FY(I) = (F (u1, w2, . . ., up),

In the following,

FPug,u, oy un), ey FY(wr,un, .

|| £ ]|=[ anorm of F(U)in E]. For example, | F ||=
\/Z;=1 Jou | F4(U) |2 dU.  Note that || F || is a

positive number, and not a vector nor a function of

Sup)) ]

U, U2, ..
(F,G) = [ inner product between F(U) and G(U),
where F(U) and G(U) are in Z]. For example,
(F,G)=Y"_, [o FUU)GA0)AU. Here, (F,G) is

a complex constant, and not a vector nor a function

Sy U

of w1, uo, ..., uy,.

V = an operator matrix on =. Tts range is also =].

V™! =[ an inverse operator matrix of V whose do-

main and range are =].

B = subset of = composed of F(U) satisfying

| V7IF < A, where A is the prescribed positive

number].

Hy = [ operator matrices on = having the range in

=, where K = (k1,k2,..., kn) € Al

We assume that all the operators are bounded and
linear in their domain.

Now, we consider a series of v — D vectors s(U, X) =
(s"(U, X),s* (U, X),...,s"(U, X)) and sz p(U) :(skp
(U),s%p(U),...,s%p(U)) (K €A, P €A)in E, where X
is a parameter vector.

Then, the signals with n variables treated in this
discussion are defined by f(X) = (V7' F,s(U, X))
(F € B). Let I be the set of these signals f(X).

For example, let = n. Suppose that V =| W(U) |* and
V= =1/ | W(U) |? hold. Also, let (F,G) = f | W(U) |?
F(U)G(U)AU/(2x)™ and s(U, X) =exp(—jUX"). Then,
above definition of f(X) is identical to ordinary inverse
Fourier transform with n variables.

Further, we define (generalized) sample values of f(X) by
frp= (V_lHKF, SK,P(U)) (I( eENPEe A)

The approximation formula is defined by
y(X)=2x Zp frrwr,p(X) (1)

For convenience sake, we call wx p(X) (K € A, P € A)



(generalized) interpolation functions. The approximation
error between f(X) and y(X) is given by e(X) =| f(X) —
y(X) |. Then, the measure of error EF(X) is defined by
E(X)= sup [e(X)]
f(X)er

(2)

which means the upper limit of e(X) for all the f(X)in T.

PROBLEM: Assume that V, T, Hg, s(U,X) and
s, p(U) (K € A, P € A) are given. Then, derive the opti-
mum wg,p(X) minimizing E(X).

Note that there exists an operator matrix Gx on = sat-
iSfinlg (V_lHKV . V_lF,SKVP(U)) = (V_lF, GKSKVP(U))
as a consequence of Riesz theorem.

Now, let X be a fixed parameter vector in R™. Then,

e(X) =| f(X)—y(X) | can be expressed as

e(X) = (V_lF,S(U,X))I (3)

where S(U, X) = s(U, X)=> . >, w,p(X)Grsw.p(U).
Using Schwarz mequahty, we obtain e( ) VI o

| S(U,X) I< VA || S(U,X) |. Equality holds when

VTIF(U)=ce S(U, X) is valid, where ¢ = VA /

|| S(U,X) ||, F1(U) = F1(U,X) € B and X is a parameter

Note that, if F(U) = F1(U), then e(X) = E(X)

holds. Hence, we can easily prove
E(X)=VA| S(U,X) | (4)

Differentiating (X )? with respect to war,g(X) (M € A,
Q € A) and putting the resultant formulas into zero, we ob-
tain a set of linear equations for the optimum interpolation
functions wx p(X) (K € A, P € A) minimizing E(X).

SiSrwi,p(X) - (Gat (U)sas,0(0)Gic(U)srep(U))
= (Gu(U)sm,o(U),s(U, X)) (M eNQeA) (5)

We assume that the coefficient matrix has sufficient rank.

vector.

2. GENERALIZED DISCRETE
ORTHOGONALITY

Tet p = d(K,P) (p = 1,2,...,m;K € A,P € A)
be one to one correspondence between an integer p (p =
1,2,...,m) and a pair of vectors (K, P) (K € A,P € A).
Further, we assume that the coefficient matrix of Eqgs.(5)
has sufficiently large rank. Then, as is easily proved, we
may consider that the vectors Gx-sx p(U) (K € A, P € A)
are independent with each other. Hence, using the Schmidt
orthogonality algorithm, we can derive a set of orthogo-
nal base-vectors {v,(U)} (p = 1,2,...,m) with respect
to the present inner product from the set of the vectors
{Gr - sk p(U)} (K €A PeA):

m

op(U) =Y apaGar - sara(U)

g=1

s, p(U) = i
a=1

Gk - bp,q - Uq(U) (6)

where || o,(U) II= 1, (0p(U), 04(U)) =0 (p#¢q) and
p=d(K,P)(p=1,2,..., m; K € A, P € A) and
¢g=d(M,Q) (¢=1,2,...,m; M € A,Q € A). Further,
ap,q and by 4 (p, ¢ =1,2,...,m) are the complex
coeflicients associated with the Schmidt orthogonality
algorithm.

Then, we can obtain

) /A= Zm s(U, X), vp(U)) |?

Z | (s
where r,(X) = Z;n:l byp wam,g(X). Further, p =
d(K,P)(p=1,2,...,m;; KEAN,PEA), ¢=d(MQ) (¢=
1,2,...,m;M € AQEA).

Therefore, we may soon notice that the following r,(X)
minimize E(X)?, where p =1,2,...

v(U)), (p=1,2,...,m) (8)

In the following in this section, we assume that the in-
terpolation functions are identical with the optimum those
minimizing E(X) under consideration. Hence, we use the
rp(X) given Eq.(8).

From Eq.(7), we can easily obtain

+(s(U, X), vp(U)) 7 (7)

,m.

TP(X) = (S(U’X)’

m

vg(U))

WK, P Qqp
q

= (Vo - Wi p(U), s(U, X)) ()

where Wicp(U)=V -3 Ty v(U)  (10)
gq=1
Let L be a vector in A and let R be a vector in A. Then,
from Eq.(6) and Eq.(9), we can prove

(VT Hy - W p(U),st,r(U))

= (VTUHLV Y g vg(U),s1,r(U))

q=1

= O Tap valU),Gr - sLr(U))

=1
O @ valU), Y iy vrU)) =D big ey
= r=1 gq=1
(1 =p, that is, (K, P) = (I, R))

1
= {0 (1 #p, that is, (K,P) # (L, R))
Eq.(11) shows that the generalized sample values of

wap(X) satisfy the generalized discrete orthogonality. As
a direct consequence of Eq.(11), if f(X) is equal to a

Q

Q
-

(11)



linear combination of wx,p(X), the corresponding y(X) is

equal to f(X), and E(X) is equal to zero.
3. GENERALIZED SPECTRUM OF y(X)

Firstly, consider the following function of the vector U.

U)y=V-Y  (VT'F (D)),

where v,(U) (¢ = 1,2,...,m) are the orthonormal bases
defined previously. Then, as direct consequences of Eq.(6),
Eqgs.(9), (10) and (11), we can prove

Z fx,p wr,p(X)
p=1

= (V7'Y(U),s(U, X)) (13)

Eqs.(13) shows that Y(U) can be considered as the gen-
eralized spectrum of the approximation formula y(X).
Further,

() (12)

we define

F(U) = Y(U) +&(U) (14)

Obviously, e(U) is the generalized spectrum of the net
value of the approximation error e(X) = f(X) — y(X).
Then, we can derive the relation with respect to the gener-

alized sample values and the squared values of the weighted

norms (the weighted energy) of F(U), Y(U) and (U).

frp=V""Hg  F(U),sxp(U)) =
(V_lHI\" Y (U),sx,p(U))
(V' Hyx - e(U),sx,p(U)) =0

VTR P=I VY @) P + 1 V) )

(15)

As a direct consequence of Eq.(15), we can prove that, if
F(U)is in B, the corresponding ¢(U) is contained in B.

Now, let T'; be the set of signals f(X)in I' satisfying that

(a) the corresponding generalized sample values

[ fre,p Jo=(V ' Hy - F(U), sxc,p(U)) are all zero with

respect to all the K (€ A) and P (€ A),

(b) the inequality || V™'F(U) ||?< A, where A is the

prescribed positive number.

Further, suppose that §(X) = o[{yx p}; X] is a lin-
ear or nonlinear approximation with a parameter X (€
R™) for f(X) in I' using the sample values frxp =
(V_lHKF,sK,p(U)) (K € A,P € A). We assume that
v[{yx,p}; X]is zero when all the fx p (K € A, P € A) are
zero. Since the error ¢(X) = f(X) — §(X) depends on the
signal f(X), we express the error as é(X) = g[f(X)]

Moreover, let d(X) = v[é(X); X] be an arbitrary kind
of linear/nonlinear approzimation error between the signal
f(X) in I' and the corresponding approximation formula
§(X), where X (€ R") is the prescribed parameter vector.
Besides, we assume that

y[E(X); X] < Y[EX); X] (16)

sup
F(X)€dy

sup
F(X)€d2

holds for all the set of signals ©, and O, satisfying
0; C O,.

The measure of error in this discussion is defined as
(17)

E(X)= sup ~[&(X); X]

f(x)er

d(X) may be a function of the prescribed vector X and
does not necessarily satisfy the axiom of the distance.

Let €(X) = f(X) — y(X), where y(X) is the proposed
optimum approximation for f(X). Further, let T'y be the
set of all the e(X) = f(X)—y(X) (f(X) € T'). Then, as the
direct consequence of Eq.(15), we can easily recognize that
e(X) = f(X)—y(X) € Ty C T holds. Further, if f(X)
is equal to €(X), the corresponding approximation formula
y(X) = y(X)o is identical with zero. Hence, we can easily
recognize that the following three conditions hold.

() To C I‘l cr

(d) e(X) = Ee(X)]

(e) y(X)=01if all fx(Xk,p) (K € A, P € A) are zero.

Therefore, for arbitrary f(X)in I', we have

E(X) = f(s;(l)pér{v[dX), X1}
> sup {y[&(X),X]} = sup {4[f(X),X]}
f(X)ery F(X)ery
Eo(X) = sup {y[e(X),X]}

f(X)er
= su e(X),X]} = su AEX,X
S Bl = e {o [de00nA] |

sup { |:
F(X)€Tg

< sp {4E(X
F(X)er,

x|} = S (A, XT)

); X]}Zf ), X1} (18)

sup  {y[f(X
(X)ery
As shown in Eq.(18), Eo(X) is the minimum value of

E(X) = sup +[é(X);X]. Hence, we can conclude that
f(X)er

the presented optimum interpolation functions minimizes

various E(X) at the same time.

4. SOME APPLICATIONS

Now, we apply these discussions to the finite orthogo-
nal series. Consider a signal f(X ZPGA(M) ap 9p(X),
where ap = [ f(Y)p(Y)dY (P € A(M)).
define »(X,Y) ZPGA(M)ZQGA(M) vp,gfr(X)iq(Y),
where V = {vp g} is a positive definite Hermitian matrix.
Let o™ (X,Y) = 3 penian Dooeacan V5002 (X)o(Y),
where V71 = {v_l } is the inverse matrix of V, and let
V and V™! be the operators Vf fT
F(Y)dY and V7 f = [VTHF(X fT _1 (X, Y)f(Y)dY

We consider the bilinear form and the generahzed norm,
< frg >= [, [Lo(X,)V)f(Y)g(X)dYdX and || f [|=<
f, f >?, respectively. Moreover, s(V, X) is defined by
s(Y, X) 8p(X)0p(Y), where X is a parameter

Also, we

= ZPGA(M)



vector. Then, we obtain f(X)=< [V 'f](Y),s(Y, X) >=
< V7lfs(Y, X) >. Further, let fx(X) = [HrxfI(X) =

> penian (ZQGA(M) hfsyQaQ)ep(X) (K € A), where Hy
= {hp o} is a complex matrices.

Now, we consider the sample points in R"™ expressed as
Xx (K = (k1,k2,...,kn) € A). The sample values are de-
fined as fr(Xx) (K € A). Further, we define sx(Y) by
s(Y) = s(Y, Xk)= ZPGA(M) 0p(Xx)8p(Y). Then, we
can obtain fr(Xx) =< [V_lHKf](Y), s (Y) >=< V-1
Hi f,sx(Y) >. Hence, the same analysis is possible.

As the bases of expansion, if an arbitrary finite or infi-
nite set of independent piece-wise polynomials; including
biorthogonal spline wavelets, we can construct the set of
orthogonal system from these functions by the Schmidt’s
orthogonalization. This linear coordinate transformation
can be included in the transformation matrix ¥ ~'. Besides,
if the set of shifted piece-wise polynomials, such as spline
wavelets, are used for the bases and continuous partial dif-
ferentiation of a signal is replaced by discrete difference with
respect to the unit delay, this process to the signal can be
included in [Hx f](X). Hence, the presented formulation
can be applied and under the previous assumptions, the re-
sult gives the menemum approximation error among all the
other approximations.

Secondly, we will consider the analysis for continuous sig-
nals. Suppose that Y' is the transpose of a vector or a
matrix Y and Y is the conjugate of Y. Let X %Y be a vec-

tor (z191, T2Y2, ..., TnYn), where X = (1, %2,...,25) and
Y = (y1,92,...,yn). Further, let f(X) = f(z1,22,...,20)
and f@f )dX ff ff T1,T2,...,8n)dz1das ... doy

defined for all the X in ©. When a pair of functions f(X) —
— F(U) satisfies f(X) = W fR" F(U)exp(jUX")dU,
then F'(U) is called the Fourier spectrum of f(X).

Let T = (t1,t2,...,tn) and Ax = A, ks, kn
constant vectors, respectively. Ax = Ak, ko, kn
teger subscripts k,, (m = 1‘n) . We assume & > 0
(p =1,2,...,n) and K € A, where A be the prescribed
finite set in Z™. Then, the sample points are defined by
Xgp=(P+T+Ag)G" (K€ A,P € Z"), where G' = H™'
is a real non-singular matrix for the coordinate transforma-
tion. The space R" is divided into disjoint union of the
polyhedra T'; (¢ = 0,£1,£2,...) each of which is the fun-
damental period of X p

Let V =| W(U) |* and = be the Hilbert space having the
inner product and the norm such as (F,G) = W fR"
| W(U) |? F(UYG(U)dU and ||F| = (F, F)1/2, respectively.

The set of signals, I, is defined as the set of all
f(X) which has the Fourier spectrum F(U) satisfying
IVTEO)IP = Gy Sral FO) P /I WU) P AU < A,
where A = (2Tr)n Ap is a positive constant.

Now, we consider the domain By p satisfying

(f) Xrx,p € Brp (KEAPEZ)

(g) Bx,q is identical with the parallel translation of Bx p
along with the vector Xx o — Xk, p

be real
has in-

Moreover, we consider the functions ¢¥x p(X) (K € A,
P e Z7") satisfying ¢vx,p(X) =0 (X ¢ Br,p; K €A,
P e Z™). We assume that all the ¢ 5 p(X) are bounded.
For each K, let fx(X) be the output of the analysis fil-
ters Hz(U). Then, the approximation of f(X) is defined by

X)= Z Z Ji( X5 p)¥r p(X), where fre (X p) are
KEA Pezm
the sample values of fx(X) at Xxp ( K €A, P € Z™).
We call ¥x,p(X) a generalized interpolation function.

Now, let E(X) = sup; x)eril e(X) [} and let S(U, X) =

VX > orendpezn ¢K7P(X)HK(U)6JUX}"’P~ Then,
E(X) is expressed as E(X) = W\/A_O[f}%n | W(U) |2

| S(U, X) |* dUT*2. Since this equation is almost the same
as Eq.(4), we can proceed to similar formulation as before.
Hence, we will only present the high light.

(h)Let ¥ x,p(X) be the unique optimum interpolation
functions minimizing the E(X) and let ¢x(X) be the
functions defined by ¢x(X) = ¥re(X + AKGt) 9 =
zero vector in Z"). Then, we have ¢x p(X)= (X —
Xrp) = ¥x[X —(P+xT + AK)Gt]. Note that these op-
timum interpolation functions can be realized by shift in-
variant interpolation filters.

(i)For the conditions (f) and (g), here, ¥ p(X) do not
satisfy the discrete orthogonality, in general. However,
when the supports of Hx(U) are included in a I';, the dis-
crete orthogonality as Eq.(11) holds.
curs if HK(U) are partial differential circuits having the
transfer function ZP ap(jur)? (juz)P? .. .(Jun)®™ (P =
(p1,p2,---,pn)). Since the optimum y(X) satisfies the dis-
crete orthogonality, if the sample values fK(XI\gp) are iden-
tical with the required discrete initial values, this optimum
y(X) satisfies the corresponding discrete initial values and
gives a favorable approximation of the solution of the par-
tial differential equation.

(J)If the interpolation functions satisfy Eq.(11), the sys-
tem can distinguish each of the coefficients in the linear
combination of Hy. Since Hy are given firstly, this will be
important to radar application.

This situation oc-

5. CONCLUDING REMARKS

Although detail is omitted, a linear phase filter bank
with 32 paths, the degree 512 and the attenuation 100 d B is
obtained by this approximation. Other multi-dimensional
numerical programming is future problem.

Finally, we would like to express our sincere thanks to
Professor S. K. Mitra in University of California.
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