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Abstract

Nonrectangular transformation is proposed for the design of
multidimensional filter banks. The advantage of nonrectangular
transformation is the abundance of transformation kernels and
their efficient implementations by ladder structures. The design
of two-dimensional two-channel filter banks from one-
dimensional filters is discussed and design examples are
presented.

1. Introduction

Designing multidimensional (MD) filter banks is a challenging
problem because the perfect reconstruction constraints is much
difficult to achieve. Various transformations are used to convert
the MD problem to a similar but simpler one-dimensional (1D)
problem. McClellan transformation is one of the most efficient
and widely applied method to design MD filter banks. Since the
MD filters designed by McClellan transform are FIR and linear-
phase, all the analysis and synthesis filters are FIR and linear
phase. Furthermore, with appropriate transformation kernel,
most 1D properties will carry through. The design procedure of
McClellan transformation uses simple substitution of variables
and its success depends on the availability of proper
transformation kernel. Furthermore, only MD zero-phase FIR
filters can be obtained.

In some filter specifications, the desired responses are
characterized by ideal frequency responses in which passbands
and stopbands are separated by boundaries that are not
necessarily parallel to the frequency axes, such as in the
diamond-shaped filters. Such filters can be obtained by a series
of manipulations on a separable prototype filter with a
rectangular passband. The prototype filter is upsampled on a
nonrectangular grid. The upsampling process produces a
parallelogram by rotating and shrinking the frequency response
of the prototype filter, together with a change in the periodicity.
Depending on the desired response, cascading to eliminate
unwanted portions of the passband in frequency response, along
with possible shifts and additions, may be used. The
nonrectangular upsampling is then followed by a rectangular
decimation of the sequence to expand the passband to the
desired size. This procedure is being described as
nonrectangular transformation [3].

The advantage of nonrectangular transformation is the
abundance of transformation kernel. Intuitively, nonrectangular
transformation can yield any MD support with straight-line
boundaries. Furthermore, the resulting filters using such
algorithms produce efficient filter structures that can be
implemented with essentially 1D techniques where the
corresponding orientations of processing are not parallel to the
sample coordinates.

In this paper, two-dimensional (2D) diamond-shaped filter bank
designed using nonrectangular transformation is considered. By
combining the results in 2D polynomial theory [2], the PR
properties of the 2D diamond-shaped filter banks are structurally
imposed if the analysis lowpass filter is a linear-phase FIR half-
band or the first polyphase component of the FIR filter is
minimum-phase. Furthermore, the results from polynomial
theory allow efficient implementation of the filter banks by
ladder structure. The PR property of the proposed filter banks
allows maximum control of the filter response, such as the
number of zeros at π. Design examples of linear phase FIR
diamond-shaped PR filter banks from half band filter and FIR
filter with minimum phase first polyphase component are
presented in the subsequence sections.

2. Nonrectangular Transformation of 2D Diamond-
    Shaped Filter

The diamond-shaped support is shown in Figure 1a. To obtain a
diamond-shaped lowpass filter using nonrectangular
transformation, we notice that the support region in Figure 1b is
a rotated and upsampled version of the diamond-shaped support.
If the filter of Figure 1b is F z z1 1 2( , )  , the diamond filter

D z z( , )1 2   is given by
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Notice that the filter in Figure 1b can be obtained as the sum of
the two filters in Figure 1c and 1d. Furthermore, Figure 1d can
be obtained by shifting Figure 1c. Consequently if F z z2 1 2( , )  is

the response of Figure 1c, and F z z3 1 2( , )  is the response of

Figure 1d, then

F z z F z z3 1 2 2 1 2( , ) ( , )= − − . (2)

Filter in Figure 1c can be obtained by tensor product of 1D
lowpass filters. Let G z( )  be the prototype 1D filter which can

be expressed in polyphase as G z G z zG z( ) ( ) ( )= +0
2

1
2 . The

transfer function F1( )z  is given by

F z z G z G z G z G z1 1 2 1 2 1 2( , ) ( ) ( ) ( ) ( )= + − − .

As a result, the diamond-shaped filter D( )z  is given by

D z z G z z G z z z G z z G z z( , ) ( ) ( ) ( ) ( )1 2 0 1 2 0 1
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If G z( )  is chosen to be half band, G z0
1
2( ) = , a half band D( )z

with diamond-shaped support is given by

D z z z G z z G z z( , ) ( ) ( )1 2 2 1 1 2 1 1
1

21 2= + − . (4)

3. Perfect Reconstruction 2D Ladder Structure

Consider the filter bank in Figure 2 with decimation matrix M .

The output � ( )X z and input X( )z  of the system is related by

� ( ) ( ) ( ) ( ) ( )X T X A Xz z z z z= + − , (5)

where A H F H F( ) ( ( ) ( ) ( ) ( ))z z z z z= − + −1
2 0 0 1 1 ,

and T( )z = 1
2 0 0 1 1( ( ) ( ) ( ) ( ))H F H Fz z z z+ ,

are aliasing and distortion functions respectively. If the analysis
and synthesis filters are chosen to be F H0 1( ) ( )z z= −  and

F H1 0( ) ( )z z= − − , the aliasing component is cancelled.

Furthermore, F0 ( )z  and F1( )z  will have the desired diamond-

shape support, if H0 ( )z  and H1( )z  have the desired support.

Consequently the filter bank is PR if

       T H H H H z zk k( ) ( ( ) ( ) ( ) ( ))z z z z z= − − − =1

2 0 1 1 0 1 2
1 2 . (6)

Let H0 ( )z  be a diamond-shaped half band filter constructed

using eq.(4). The companion filter H1( )z  is given by

H z1 22( )z = . The filter bank can be constructed by ladder

structure as in Figure 3a. Obviously the performance of this
filter bank is poor since the high pass filter is a pure delay. To
obtain better performance, we cascade the ladder structure as
shown in Figure 3b, by Lemma 3 of [2]. Consequently, the new
analysis high pass filter is given by

H z C H1 2 02( ) ( ) ( )z z z= − , (7)

where C( )z  is the cascaded filter with property C C( ) ( )− =z z .

As proved in [2], the solution space of H1( )z  is spanned by

C( )z . Therefore, H1( )z  with the desired characteristics can be

obtained by choosing different C( )z . Figure 3b shows the
resulting ladder structure where we consider the polyphase
component of variable z2 .

Notice that if H0 ( )z  is chosen to have the form of eq.(3), linear-

phase or minimum phase solution can be still be obtained. This
is because Noether condition [2] requires that the inverse of

G z z0 1 2( )  and G z z0 1
1

2( )−  are stable filters which reduce to

minimum phase G z0 ( ) . Notice that if G z( )  is linear-phase, the

resulting D( )z  is also linear-phase. Similarly, according to

Lemma 3 of [2], H1( )z  can be chosen as eq.(7), and Figure 3c is

the resulting ladder structure.  Moreover, G0  and G1  can be

chosen as allpass IIR filters [5], which results in an IIR filter
banks. IIR solution using allpass filters are considered in Section
4.

Wavelet filter banks can be obtained by using Bernstein
polynomials. As discussed in [2] a maximal regular lowpass 1D
prototype filter can be obtained from halfband filter H z( ) ,

which is a Bernstein polynomial in z. Thus, H0 ( )z  has the form

of eq.(6) and G1( )z  is a Bernstein polynomial. It can be proved

that the regularity of the 2-D wavelets obtained from
nonrectangular transfomation increases linearly with the
regularity of the 1D filter so that it can be arbitrarily high.
Design example is presented in the Section 5.

4. Allpass Solution

A wide family of practical transfer functions can be represented
as

G z
A z A z

( )
( ) ( )= +0 1

2
, (8)

where A z0 ( )  and A z1( )  are stable allpass filters [7]. Rewrite

eq.(8) in polyphase form,

G z z z z( ) ( ) ( )= + −β β0
2 1

1
2 (9)

It is obvious that β0
2( )z  and β1

2( )z  and β0 ( )z  and β1( )z

have to be allpass. As a result, a 2D diamond-shaped filter bank
can be constructed using Figure 3c with

H z z z z z z z z z0 0 1 2 0
1

2 2 1 1 2 1 1
1

22( ) ( ) ( ) ( ) ( )z = +− −β β β β

H z C z z z z z z z z z z z1 2 1 2 0 1 2 0
1

2 2 1 1 2 1 1
1

22 2( ) ( )( ( ) ( ) ( ) ( ))z = − +− −β β β β

where C z z C z z( ) ( )− =1 2 1 2 . In particular, a half-band IIR filter

can be constructed as

G z z z( ) ( )= + −1 1
1

2β (10)

where A z0 1 2( ) /= , and A z z z1
1

1
2 2( ) ( ) /= − β  is allpass filter.

Following the nonrectangular transformation, the 2D diamond-
shaped filter bank can be constructed using Figure 3b with

H z z z z z0 2 1 1 2 1 1
1

21 2( ) ( ) ( )z = + −β β

and H z C z z z z z z z1 2 1 2 2 1 1 2 1 1
1

22 1 2( ) ( )( ( ) ( ))z = − + −β β

Notice that the same structure is also proposed by [5] and the

case of C z z z z z z( ) ( ) ( )1 2 1 1 2 1 1
1

2= −β β  has been analyzed. The

system, however, is based on intutative observation of the
structure of 2D half-band filters, and does not generalize to other
nonrectangular transformation. Furthermore, the connection with
2D polynomial theory has not been exploited.

5. Design Examples

We consider the FIR solutions in this section only. The design of
FIR solution can be summarized as follows.



1. Design a linear phase lowpass filter G z( )  with even order
and half band response or the first polyphase component is
minimum phase.

2. Construct H z0 ( )  by performing the nonrectangular

transformation according to eq. (3) for minimum phase
solution or eq(4) for half band solution.

4. Construct H z1( )  according to eq.(7).

Since C( )z  affects the response of the resulting filter banks, two

choice of C z( )  is used in this paper.

i. C z G z( ) ( )= 1  and C C z z C z z( ) ( ) ( )z = −
1 2 1

1
2

ii. C z( ) =  maximally flat half-band diamond shape FIR filter.

It should be noticed that G z( )  itself is required to be wavelet
filters for constructing wavelet filter banks.

The frequency response of the resulting 2D diamond-shaped
filter bank using the half band maximally flat linear-phase G z( )

with 15 taps and C z G z( ) ( )= 1 , is plotted at Figure 4, where the

resulting lowpass and highpass subband filters have size 27x27
and 53x53 respectively.

Similarly, linear-phase 2D diamond-shaped filter bank
constructed by 1D linear phase filter with minimum phase first
polyphase component is plotted in Figure 5. G z( )  is constructed

by remez algorithm with 15 taps and C z( )  is chosen to be
maximally flat half-band filters with 15 taps. The resulting
lowpass and highpass subband filters have size 27x27 and
53x53 respectively.

IIR solution can be constructed similarly by choosing half-band
IIR filters, or IIR filters where its first polyphase component has
stable inverse.

6. Comparison of Existing Method

Similar 2D diamond-shaped filter banks structures and design
methods have been proposed by [3,5,6], where the maximum
regular case is discussed in [6], IIR case in [5] and iterative
improvement is discussed in [3]. These approaches, however do
not describe the connection between polynomial method, non-
rectangular transformation and 2D filter banks design.
Consequently, their approaches do not generalize to other
nonrectangular transformation which leads to different supports
and different sampling lattice. They are limited to rotation of the

rectangular support by polyphase transformation. In particular,
the 2D transformation considered in [5] is polyphase
transformation which is different from nonrectangular
transformation although both leads to the same structure. For
example, the current design technique can be easily generalize
to filter banks with fan filter support which cannot be achieved
by polyphase transformation. Moreover, the design of linear
phase PR solution using 1D filters with minimum phase first
polyphase component is largely overlooked. This is because
normally G z0 ( )  does not exist in the formulation of 2D half-

band filters.

7. Conclusions

In this paper, we have considered the design of 2D filters
through nonrectangular transformation. Using polynomial theory
[2], ladder structure is proposed for the design and
implementation of the filter banks. The ladder structure imposes
structural PR property, and results in maximal freedom in
designing the response of the subband filters. The proposed
design method is applicable in designing linear phase FIR, and
IIR filter banks. Furthermore, the design of maximally regular
wavelet filter banks is also discussed.
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Figure 1. Ideal frequency response of a) diamond filters. b), c) and d) Frequency response of  rectangular filters.
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Figure 3. 2D analysis filter banks in ladder structure. a) High pass filter as pure delay. b) Cascade structure. c) G0  minimal phase filter.
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Figure 4. Diamond-shaped 2D PR filter banks with 27x27 taps lowpass filter and 53x53 taps highpass filter from 1D maximally flat half band FIR filter with 15
taps and C z G z( ) ( )= 1 .
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Figure 5. Diamond-shaped 2D PR filter banks with 27x27 taps lowpass filter and 53x53 taps highpass filter from 1D FIR filter with 15 taps and minimum
phase first polyphase components and C z( )  is maxmially flat half band FIR filter with 15 taps.


