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ABSTRACT

This paper intends to present an integrated approach of con-
structing new spatio-temporal wavelets for discrete signal analy-
sis. The main illustrative field of applications considered here
stands as the analysis of digital image sequences. Neverthe-
less, this can be readily extended to any kind of spatio-temporal
signals. Continuous wavelet transforms, continuous series, dis-
cretized series and discrete transforms are considered here in an
unified way. The analysis to be developed relies only on dynamic
parameters like uniform translation and rotation, on kinematic
parameters like velocity and speed and on structural parameters
as scale and orientation. This digital processing intends to cover
the detection and the focalization on motion-based regions of in-
terest in order to perform tracking, classification, segmentation,
multiscale trajectory construction and eventually a selective re-
construction of the useful content.

Key Words: continuous wavelet transform, mo-
tion analysis, spatio-temporal filtering, image se-
quence processing.

1. INTRODUCTION

The primary goal of the present work is to thoroughly inves-
tigate all the families of spatio-temporal wavelet transforms
in order to bring together the continuous, the frame and the
discrete versions and to construct new families of tools for
the analysis of spatio-temporal signals. Though digital im-
age sequences (2D + T signals) are presented as the main
illustrative application in this paper, the theory extends to
any kind of (nD+T) signals. The main goal of this research
work is to develop specific digital tools for motion analysis,
multiscale trajectory constructions, selective motion-based
feature extraction, focalization and reconstruction. On one
side, the discrete wavelet transform has already proved its
usefulness as a powerful tool for signal filtering with numer-
ous properties (orthogonality, bi-orthogonality and linear-
phase response, selectivity, regularity, statistical adaptivity
and criteria-based optimum design) amenable to applica-
tions like coding, interpolation, restoration, reconstruction
and synthesis. In that field, motion-compensated wavelet
filtering [8-9] (i.e. temporal filtering applied along the as-

*The following text presents a research work supported by
the Commissions of the European Communities-DG XII under
a fellowship ERB4001GT930967 of the Human Capital and Mo-
bility. The authors would like to thank Professors J.-P. Antoine
from the Institute of Theoretical Physics (Université Catholique
de Louvain, Belgium) and R. Murenzi from the Center for The-
oretical Studies of Physical Systems (Clark Atlanta University,
USA) for useful discussions.

sumed motion trajectories) has also been demonstrated as
a highly efficient tool. Modeling motion with affine mod-
els allows several generalizations; among them, this pro-
vides connexions with the continuous wavelet transforms.
Indeed, the affine transformation can be exploited to con-
struct groups like the affine-Galilei group and to leads us
to new admissible spatio-temporal wavelets. On the other
side, the continuous wavelet transform stands as a powerful
tool of signal analysis introducing numerous sets of physi-
cal parameters to put in operation [5]. In the field of image
sequence analysis, the current spatio-temporal phenomena
require to take simultaneously into account a vast choice
of analyzing parameters the most important of which are
the translation, the rotation and the deformation, the ori-
entation (analysis direction), the scale, the speed and even-
tually the acceleration. The informations of interest em-
bedded in the image sequences are intended to be detected,
analyzed and selectively reconstructed by the discretized
inverse wavelet transform.

2. DEFINITIONS

In whole analogy to continuous and discrete Fourier trans-
forms, several wavelet transforms may be defined. These
are namely the continuous wavelet transform, the wavelet
series or wavelet frame, the discretized wavelet series and
the discrete wavelet transform. Under conditions of suffi-
cient regularity, any discrete wavelet filter can be associated
to an existing continuous wavelet ¥ (not necessarily with
analytical formulation) such that filtering a sampled signal
with the discrete wavelet yields exactly or, at least closely,
the sampled version of the signal filtered with the associ-
ated continuous wavelet ¥ [3]. In fact, the discretization
of continuous wavelet transforms is numerically stable and
invertible on admissible frames [1-4].

Let us first consider the continuous spatio-temporal
spatio-temporal wavelet transform of a signal s(Z,t) de-
fined in the Hilbert space L?(R"™ x R, d™#dt) and define a
doubly-indexed family of wavelets constructed by dilating
and translating in the affine group. In this case, the spatio-

temporal wavelet transform W [s(Z,t); a,g, 7] is defined as
an inner product expressed in bracket notations
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where % and w are the spatial and temporal frequencies
respectively and the symbols ~ and ~ stand for the Fourier
transform and the complex conjugate. The wavelet ¥ is the
mother wavelet which must verify the condition of square-
integrability meaning that there exits a constant cg such
that
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The wavelets ¥ _; are the members of the of spatio-
temporal wavelet family generated by the affine group and

defined in the space of the parameters a, 5, 7. Continu-
ous and discrete wavelet transforms have each reconstruc-
tion formulae allowing numerical reconstruction, practically
processed in a frame which defines a family of functions of
L*(R"™ x R,d"#dt) {9.5-(Z, )}, ez 5ezn- This leads to
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A numerical efficient way of performing the wavelet trans-
form consists of working in the spectral domain by means
of (2D+T) FFT. Fast continuous wavelet transform is also
a current topic of research [2].

3. BUILDING SPATIO-TEMPORAL
WAVELETS

The construction of spatio-temporal wavelet families and
the interconnections are both depicted in Figure 1. Dis-
crete spatio-temporal wavelets have already been studied
as motion-compensated wavelet filters i.e. as subband filter
applied along the motion trajectories [8-9]. Using motion-
compensated filters requires at each point, where the fil-
ter is applied, to build motion trajectories and to compute
the signal intensities along them. One convenient way of
constructing trajectories consists on estimating motion and
performing a joint motion-based segmentation of the sig-
nal. Affine transformations are an efficient way to model
linear motions for mobile segments in deformation. It takes
into account translation, rotation, scaling and shear. One
idea developed in this work is to express all these elemen-
tary transformations as unitary operators in the spatio-
temporal domain nD + T, and to write useful generaliza-
tions, namely the translation, the dilation, the rotation, the
solid-deformation and eventually the acceleration.

Starting from the particular case of motion-compensated
discrete wavelets, families of continuous spatio-temporal
wavelets may be constructed by exploiting the idea of as-
sociating groups to sets of unitary operators defined in the
previous section. The set of the operator parameters de-
fines a group characterized by one law of composition, the
identity and then the inverse element. If the group represen-
tation in the Hilbert space L*(R"™ x R, d™#dt) posesses the
properties of unitarity, irreducibility and square-integrability
[6], then admissible mother wavelets may be defined in the
spatio-temporal space and all the operations defined in the
group can be applied on the mother wavelet to generate all
the wavelets in the family. One member of the wavelet fam-
ily can be associated to any point of the parameter space.
The analysis process consists in representing the signal in
the parameter space or, at least, in some plane (sub-space)
of interest.

For example, let us consider the operator {Q : L*(R" x
R)} — L?*(R™ x R)} defined on the set of parameters

(a,c,r,b,7,€) of unitary transformations (a the spatio-
temporal dilation, ¢ the factor tuning the speed module,
r the spatial rotation, b and 7 the spatial and tempo-
ral translations, and, e the time reversal parameter); they
lead to unitary irreducible and square-integrable represen-
tations. This defines the kinematical wavelets described by
Duval-Destin and Murenzi [5]. Going to a more general
construction, another group is worth being studied. That
is the affine-Galilei group derived from the Galilei group
by adding independent time and space dilations, ag and a
respectively. The generic set of parameters is referred to

as (1, 3, ¥, a0,a,r) where 7 and b are the time and space
translations, ¥ the vector of speed, r the spatial rotation in
R™. The representations of the affine-Galilei group in the
spatio-temporal domain fails to be square-integrable and
requires quotients [10] to retrieve the property. Among all
the sections (quotients), we consider that obtained by let-
ting ap = a as the most interesting one leading to square-
integrable representations in space R™ x R). The action of
the parameters in the space can be symbolically written in
a matrix formulation as

’
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with R(#) the rotation matrix. Therefore, if g is element
of the group g = (7,b;¥;a0,a,r), the law of composition

derives from the matrix multiplication gg’ = (aorr + 7,
arb + 9 + 3; aré + ai)fi; aoai),aal,rrl). A similar case
of study can be carried out on the Weyl-Poincaré group
(where a dilation parameter added to the Poincaré group)
to derive admissible relativistic wavelets without requesting
in this case any quotient.

The discretization issue consists on condensing in the
most efficient way all the information of the wavelet trans-
form on a discrete lattice of parameters. The reconstruction

is exact if the frame of wavelets g, ; . generates a basis of

L?(R"™ x R, d™#dt). Admissible frames or series of wavelets
may be defined in each family of continuous wavelets pre-
sented in the previous chapter to tile the parameter space.
In fact, these series and their discretized versions aim at
supporting the numerical computations and the discrete
signal analyses or syntheses (signal reconstructions). Com-
plete or selective analyses may be performed respectively
in the whole parameter space or in some sub-spaces. The
most interesting application is here to selectively reconstruct
objects with a specific and given velocity. This object has to
be considered as being the only useful information to be ob-
served. The lattice density of the frame defines the level
of the reconstruction quality performing in that sense some
quantization of the reconstructed signal. Selective recon-
structions consist in providing only sufficient frame density
in the plane of interest.

4. APPLICATIONS

Applications for the digital image sequence analysis are
here essentially proposed with Galilean wavelets to ana-
lyze the signal content according to scale, orientation and
velocity. Motions like uniform translations and accelera-
tions can be efficiently analyzed and tracked. Eventually,
motion-based selective reconstructions may be presented.
The anisotropic Morlet wavelet is mainly considered in a
non-separable spatio-temporal form
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Figure 1. The families of spatio-temporal wavelet transforms.
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anisotropy of the wavelet. Figures 2 and 3 show the Galilean
Morlet wavelet at a velocity (1,0) and the synthetic image
sequence to be analyzed at the 25th image (sequence with
four objects in affine transformation: translation, rotation
and shear). Figures 4 and 5 present the Fourier energy
localization resulting from motions and the wavelet anal-
ysis in the velocity plane. Figure 6 presents the wavelet
analysis in the spatial parameter domain at the 25th image
working as a motion-based segmentation algorithm. Fig-

ure 5 derives some frame bound ratios 222 for the Galilean
Morlet wavelet for reference lattices made of translations
bo,z, bo,y, bo,~, rotation Lo, scale ap and velocity (70,2, Y0,y)-

5. CONCLUSIONS

In this paper, one new family of spatio-temporal wavelet
transforms has been presented as a tool to analyze spatio-
temporal signals according to physical parameters of trans-
lation motion. Other kind of motion can be considered in
the same way. The signal analysis has been first developed
in the continuous realm by means of spatio-temporal op-
erators, group theory and representations properties. Any
group or quotients leading to square-integrable representa-
tions in the spatio-temporal domain (nD + T') leads to ad-
missible wavelets and generates a new family. Wavelet and
signal discretizations through admissible frames allows dis-
crete analyses and selective reconstructions. Interestingly,
the Fourier domain turns out to be an efficient realm where
to study motion and tracking as well as to develop efficient
numerical algorithms (FFT and parallelization).
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THE GALILEAN WAVELET AT V=(1,0), A=1, EPSILON-t=60
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Figure 2. Galilean Morlet wavelet.

ENERGY CONTOURS, FOURIER DOMAIN: PLANE Fx=0

3f 3 ]

9
0 o -
A - 1
o (¢ -
T o O
a1 .
- = RS O] ]
—_— circle: V(0,-4)

= ——
8
5
e —
- = -
. - ,V(zz)
O O %
, T - . o rectar@le: V(1,1)
- rectandle: V(0,0) o
¢
-3k, . . - 2 . . E|
-3 -2 -1 1 2

0
f_t [radian]

Figure 4. Component velocity planes embedded in the Figure 5. Motion analysis in the synthetic sequence:

Fourier transform of a synthetic sequence.

ENERGY CONTOURS OF THE WAVELET TRANSFORM AT V=(2,2)
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Figure 6. Synthetic sequence: wavelet analysis on the 25th
image (Galilean Morlet wavelet), 7 = (2,2).

Figure 3. Synthetic sequence: 25th image.

ENERGY IN THE WAVELET DOMAIN: GALILEAN MORLET, a=1, theta=0
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bo,x bO’y bo,r L o a, yo’X yo,y BIA
1 1 1 20 2 1 1 1.1427
1 1 1 20 2 15 15 1.3141
1 1 1 20 2 2 2 1.9145
1 1 1 20 2 25 25 3.1001
1 1 1 20 2 075 075 | 1.0632
075 075 075 20 2 1 1 1.1327
15 15 15 20 2 1 1 1.1590

Table 1: Frame bounds for the Morlet wavelet

ko = (x[2/In2]1/2,0,0) and €; = 60.



