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ABSTRACT

The extension of stationary process autocorrelation coeffi-
cients sequence is a classical problem in the field of spectral
estimation. The periodically correlated (PC') processes have
pratical importance and an interest according to their con-
nection with stationary multivariate processes. That’s why
we propose a new approach to resolve the previous problem
in this context. We use the partial autocorrelation function
(PACF) of this processes class. The extension is so easy
to describe. Next, we extend the maximum entropy method
(MEM) to the degenerate case and show that the solution
is given by a Periodic Autoregressive (PAR) process. Fur-
thermore, the connection with the problem of multivariate
stationary processes autocorrelation sequence is presented.

1 INTRODUCTION

Although the partial correlation notion was introduced by
Yule [1], the one-to-one correspondence between autocovari-
ance function (ACF) and PACF for stationary processes is
quite recent [2]. This result can be extended to the nonsta-
tionary case ([3], [4]). Thus the PACF f(-,-) constitutes
another parametrization of the second order structure. But
this function is easily identifiable by comparison with the
classical ACF R(-,-) which must be nonnegative definite.

The PC processes were introduced by Gladysev [5], as
nonstationary processes with periodic AC'F. These processes
are meaningful according to their connection with station-
ary multivariate processes. At each PC process corresponds
a stationary multivariate process and conversely [5]. The
function B(-,-) of such process is characterized by its peri-
odicity likely to the function R(-,-). The correspondence
between these two functions is given by Levinson-Type Re-
cursive algorithm of Sakai [6] or Pham [7] in the degenerate
case. In [7] the coefficients 8(t, s) are triangular partial corre-
lation matrices one’s. In the stationary multivariate case, the
choice in factorizing the covariance matrices of the predic-
tion errors leads to different definitions of partial correlation
matrices (see [8]). The triangular matrix results from the
use of both lower-upper and upper-lower factorizations. Let
note that the degenerate case is unusually for the stationary
scalar processes but often occurs for the PC processes. So,
it seems interesting to study this situation.

We suggest the following approach to state the exten-
sion problem: given the periodic function values R(t, s) for
1 <s <t < M, one wish to determinate the conditions for
these values to be the ACF one’s and the way to describe
the whole of such function extensions. The parametrization
in terms of PACF allows us to resolve this problem in an

sophie.lambert@imag.fr

elegant way even in the degenerate case. Notice that the
previous problem coincides with the extension of multivari-
ate stationary process autocorrelation sequence one’s when
M is a multiple of the R(-,-) function period. Otherwise it
deals with a more general problem where the last autocorre-
lation matrix is not completely known.

Next, we are interested in the solution maximizing the en-
tropy. In the stationary nondegenerate case (scalar or multi-
variate) the M EM was proposed by Burg [9]. The solution of
this method is the one for which the innovation process vari-
ance (determinant of the covariance matrix, in multivariate
case) is maximum. When the process is PC of period T, the
innovation process variance, depending of time, is periodic
of same period. Our approach to extend the M EM to the
degenerate case is the following: the solution is the one for
which the product of the innovation process variances not al-
ready null, is maximum. We constate that the above method
coincides with the Burg’s method for stationary multivari-
ate regular processes and generalises the one resulting from
the particular degenerate case treated by Inouye [10]. Our
method is equivalent to put 8(t,s) = 0 everywhere this func-
tion is unknown. It follows that the solution is PAR. The
algorithm providing the correspondence between the R(,-)
and (-, -) functions, yields also this model parameters. The
correspondence between the PAR processes class and the
AR stationary multivariate processes one’s is established by
Pagano [11] and the relationship between the parameters of
both models are quite easy.

Finally our approach is compared with the Alpay et al.’s
one [12] which consider the extension problem in terms of
cyclo-correlation functions.

Section 2 is devoted to the PACF for PC processes and
the extension problem is treated in Section 3.

2 PACF FOR PC PROCESSES

In this section we present the PC processes PACF' and give
its correspondence with the ACF. Before, we need to recall
some necessary results in the more general case of nonsta-
tionary processes ([3]).

2.1 Nonstationary General Case

Let X(-) = {X(¢),t € ZZ} be a scalar complex valued non-
stationary process with zero mean and ACF R(-,-). We
consider the Hilbert space L{X(t),t € ZZ} with the inner
product (U, V) = E{UV}. So R(-,) is defined by R(t, s) =
(X (1), X(s)), (t,s) € Z4*. We note e(t;s) the (t — s)-th or-
der forward partial innovation. Putting e(¢;t) = X (¢) and
o (t;8) = |le(t; s)||2, the associated normalized innovation is



defined for s < ¢ by n(t;s) = =(¢;s)/o(t;s) with the con-
vention 07! = 0. The backward innovations, obtained by
reversing the time index, are denoted with a star, €*(s;¢)
and n*(s;t) = e*(s;t)/0"(s;t) for s < t.Then [3] the PACF
B(-,-) is defined on ZZ* by

(n(t;s+1),n"(s;t—1)) ifs<t
YOIk if s =1t

B(s, 1) if s>t

For s < t, B(¢,s) is the partial correlation coefficient be-
tween X (t) and X (s) in the set {X(s),..., X (¢t)}. Putting
B¢, t) = Var {X(t)} instead of 1, the function f3(,), likely
to the ACF', characterizes the second order properties of
X(:) (see [3]). The advantage of this function is that it
is easily identifiable: its magnetude is generally stictly less
than 1, the equality to 1 translating the finite order sin-
gularities. Precisely, for s < ¢ |8(t,s)] = 1 if and only if
s is the uppest integer such that X(¢) belongs to the set
{X(s),...,X(t—1)} and the convention 07! = 0 leads to
B(s—k,t)=06(s,t+k)=0for k > 1.

Bt s) =

2.2 Periodically Correlated Processes Class

A nonstationary process X(:) is called PC of period T [5]
when its ACF is periodic of same period:

R(t+T,s+T) = R(t,s) for all (t,s) € Z7°.
The relation between this processes class and the multivari-
ate stationary processes one’s is given in the following way:
let define the jth component of the T-multivariate process
V() ={Y(t),t € ZZ} by,

;) =X(+Tt-1))fory=1,...,T, t € Z7.
Then Y(-) is wide-sense stationary if and only if ([5]: The-
orem 1) the associated scalar process X (-) is PC of period
T.

According to the kind of relationship between the R(-,-)
and 8(-,) functions, it is easy to see that X(-) is PC of
period T' if and only if 8(:, ) satisfies,

B(t+T,s+T)=p(ts) forall (t,5)€ Z7°.
The periodicity property added to 3(-,-) other properties
involves that the second order structure of these processes
can be parametrized by T functions defined on IN, B(k) =

B(t, t—k), t =1,...,T which are subject to only the following
conditions

5:(0) > 0 and |B(k)| < 1,k > 1,
Bi(0) = 0= Bi(k) = ﬁ(t+k)mOdT(k) =0,k2>1,
Be()l =1, 5> 0= Be(k) = 6(t+k—])mOdT(k) =0,k>y,

where kmodT is the integer 7 in [1,...,7] such that k =
nl' + 79, n € ZZ. We note Dg the satisfying above conditions
functions set. Any function belonging to Dg is the PACF
of PC process of period T" and from a such function, one can
determinate the correspondent function R(-,-) through the
Levinson-Type algorithm described in the subsection below.

2.3 Levinson-Type Algorithm

According to the expressions of (-, ) and 0*2(~, -} in term
of B(-,-) (see [3]), we have for a PC process of period T,

02(t;t— n) = 02(k;k —n)= cri(n)7
*2

k = tmodT.
o (t—n;t):a*Q(k—n;k) :cr;f(n)7 me

Furthermore the coefficients in

e(tit—n) =3 an(n, ))X(t - j), ax(n,0) = 1

=0
e"(t—n;t) = Z ap(n, NX({t—n+j), ap(n,0)=1,
=0

not unique in the degenerate case, depend only of &k =
tmodT'. The Levinson-Type algorithm computes these co-
efficients (chosen by the procedure itself in the degenerate
case) in order to establish the relationship between S3x(n)
and R(k — 5,k —n), j = 0,...,n — 1, through the quan-
tity (e(k;k —n+ 1), X(k — n)). The algorithm below is the
Pham [7] one’s adapted to provide the correspondence be-
tween R(-,-) and 3(-,-) on the domain {1,..., M}>. We note
r the integer such that r = MmodT"

Algorithm 2.1
Fork=1,...,T:
2
R(k, k) = Bx(0) = 0 (0) = 03" (0).

0
Forn=1,...,M — 1, with Z...:Oando_lzo.’
J=1

tfn<M—T then Ay =1, Ao =r and As =r + 1, else
fn>M-T+1andn <M —r then Ay =1, A =71
and As = nmodl + 1,
tfn>M—r+4+1 then Ay = nmodl' + 1, A2 = r and
As=T+1,
fork = Ay to Az and As to T':

Br(n) =

(n) = [1 — |Bx(n)] ] oi_1{n —1),
an(n,n) = =fu(n) T,
* T %% (nmD)
ai(n,m) = ~F(m e,
forg=1,...,n—1:

Clk(?’l,j) = Clk(n - 17]) + Clk(?’l, ")GZ—l(” - 17 n— ])7
GZ("J) = GZ—l(” - 17]) + GZ(W n)ak(n - 17 n— ])7
where the subscriptk —1 = 0 s replaced by T.

3 EXTENSION OF AUTOCOVARIANCE COEF-
FICIENTS SEQUENCE

Before consider the problem of extension, let review some
results of Pagano [11] needed for later discussions.

3.1 Periodic Autoregressive Processes

The autoregressive processes analogous for the PC' processes
is given by: a process X (-) is said to be Periodic Autoregres-
sive of period T and order (pi,...,pr) if for all integer ¢,

Pt

D a)X(t— 5) = (),

j=0

a:(0) =1, (1)

where {e(t),t € ZZ} is a sequence of zero-mean uncorrelated
variables with Var {e(t)} = o7, pt = piyr, 07 = U?+T and
ar(j) = aryr(5), 5 =1,.. ., pe.

The correspondence with the autoregressive multivariate
stationary processes is stated in [11] by the following theo-
rem.

Theorem 3.1 (Pagano [11]) Let Y(-) be the T-multivariate
stationary process associated with X (-). Then Y(-) admits



the representation,
P
STAGY(E- ) =e(t), A(0) = In, (2)
2=0

where {e(t),t € ZZ} is a sequence of zero-mean uncorrelated
T-dimensional variables such that T' = Var{e(t)} is pos-
itive definite matriz, if and only if X(-) is PAR of pe-
riod T and order (p1,...,pr) with positive o5,... 0% and
p = max; [(p; — J)/T] + 1, where, for any real ©, [z] = j is
the integer part of x.

Furthermore, the relationships between parameters of
both models are given by,

AG)= LT A'G), G=1,...,p, T=LT"DL7T",

where T denotes the conjugate transpose and A(+), L and
D are T' x T matrices determined by,

Li; = ax(k — j) for j <k, else 0,
) =ar(Tv+k—j), v=1,...,p
D = diag(o1,...,0%).

We can easily show (see proof and comment of [10]: The-
orem 1) that the Theorem 3.1 is available even in the degen-
erate case (i.e. I" is singular). The coefficients of the L and
A’(-) matrices are not uniquely defined and some elements
on the D diagonal vanish.

We can assume without loss of generality that e(-) in (2)
and ¢(-) in (1) are the innovation processes of Y(-) and X ().
Replacing the innovation process decompositions by the for-
ward partial innovation one’s in (2) and (1) (where p = n
and p; =nT —14j,5=1,...,7, n € IN), we obtain in the
same Pagano’s way the following result useful later,

ij=1,...T.

I R
I'n=L,"DnLz" , ne€lN, (3)

where 'y, is the n-th order forward partial innovation of Y()
variance,

D, = diag(crf(nT)7 ag(nT +1),..., a%«((n + )T —1)),

and L, is a lower triangular matrix (with 1 on the diagonal)

defined by, for k,7=1,...,T:
{Ln}k] =ar(nT —14+k,k—j)if k < j, else 0.

3.2 The Extension Problem

Let R(t,s), t,s =1,..., M, be the T-periodic function val-
ues. According to the previous section, we can treat the
extension problem, stated in the introduction, in terms of
partial autocorrelation. Starting from the data R(¢, s), the
Algorithm 2.1 yields for k =1,...,T, Bx(n), 0 <n < mo(k),
where mo(k) = M —r—14+kifk <r,else M—T—r—1+k.
The values R(t,s) represent ACF one’s if and only if the
coeflicients By (n) satisfy the Dg constraints. The whole ex-
tensions of such functions are so described through the exten-
sions of Bx(n) remaining in Dg. Notice that the degenerate
case arises from the finite order singularities on {1,..., M}.
What is translated by the coeflicients 8x(n) of magnetude
equal to 1.

3.3 The Maximum Entropy Method
For the scalar stationary processes, it is well known that the
M EM solution is the one for which the innovation process
variance is maximum. The variance o of the innovation
process for a PC process is T-periodic and given by [4],

+co

i =80 [ [1 = Bx(w)FF] . & = tmodT.

n=0

Several of these T' variances can vanish in the degenerate
case. To extend the M EM to this process class, we suggest
so the following approach which will be justify later. This
method consists in choosing among the whole extensions the
one making maximum the quantity,

T

H o2, where S = {k,ai(mo(k)) = 0} .

k=1,kg¢S

According to the 0% expression, this is equivalent to max-
imize separately each terms of the above product and put
Br(n)=0,fork=1,...,T, n > mo(k). Thus [3] the solution
is PAR of period T and order (mo(1),...,mo(T")) and the
parameters of this model are provided by the Algorithm 2.1
in the following way:

ot = o7 (mo(k)),

ax(j) = ax(mo(k),7), j=1,...,mo(k),

In order to justify this method, we consider the associ-
ated extension problem in the multivariate stationary case.
Let X(-) be a process which ACF coincides with the data

on the domain {1,...,7}> and Y(-) be the T-multivariate
process associated with it. If we note the autocorrela-

k=1,...,T.

tion matrix of Y(-), Ry = E{Y(t—l—k)Y(t)T}7 we have
{Rk}ij =R +kT,j),4,5=1,...,7. When M = (n+ 1)T,
n > 0, the problem considered coincides with the extension
of Ro,..., Ry one’s.

The M EM, proposed by Burg [9] in the nondegenerate
case, consists in finding the multichannel spectrum P(-) that
satisfies

+7 )
/ P(w)ewkdw =R, k=-n,...,n,

and maximizes

+m
/ In det P(w)dw.

-

On the other hand, we have ([13]: Theorem 7.10),
+m
/ Indet P(w)dw = IndetI" o,

where I'eo = lim I', represents the covariance matrix of
n—+co

the innovation processes. The I';, decomposition (3) gives

T
detl'oc = lim detD, = [] o7
n—+co
k=1

This shows the both methods coincides for this situation.

In [10], Tnouye proposes to extend the M EM to the par-
ticular degenerate case where exists a purely nondetermin-
istic T-dimensional process associated with a solution of
Ry, ..., R, extension problem. The solution maximizing the
entropy is the one for which the covariance matrix of the
innovation process I'« satisfies

leo > oo, (4)

Yvhere I > f‘oo means ['oo — f‘oo nonnegative definite and
I"« 18 the covariance matrix of the innovation process associ-
ated with any other solution. In fact, this method consists in
fitting an AR model to the data Ry, ..., R,. The decompo-
sition (3) involves that the solution we propose is such that
I'eo = I'y, and consequentely is identical with the Inouye’s
one. Let us remark that our method is equivalent to maxi-
mize o, (in the sense of (4)) even if M is not a multiple of

T.



3.4 Cyclo-Correlation Functions

The second order structure of a PC process can
be parametrized by its T cyclo-correlation functions

Bi(+),-..,Br—_1(-) defined by [5],

2mikt

T—1
R(t4n,t)=> Bi(nme T , (tn)€ 22"
k=0

For convenience the definition of functions Bx(n), k =
0,...,7 — 1, is completed for integers k with the equal-
ity Br(n) = Brtr(n). Alpay et al. [12] have considered
the extension of such functions from the data Bx(n), k =
0,...,77—1,0 <n < N, in the nondegenerate case. These
data represent the first values taken by cyclo-correlation
functions if and only if the set of matrices {B;(-)

defined by,
Biy(n) = By_i(n)e ", n=0,...,N, (5)

is the one of some T-dimensional stationary process auto-
correlation matrices. Then the whole extension of the data
By (n) is described through the B(n) one’s respecting (5).
Thus this procedure consists in extending a particular se-
quence of autocorrelation matrices.

This problem is equivalent to the one of R(-,-) extension
from the data R(¢t,t —n), t = 1,...,7, 0 < n < N. The
Algorithm 2.1 can be adapted for this domain and the PACF
allows to resolve this one even in the degenerate case. Notice
that one can use another way by considering the PC process
PACF associated with the second order structure defined
by the T' x T matrices B(-).

}l,Fo,...,T—l

4 CONCLUSION

We have shown that the PACF'is a good parametrization for
the second order structure of PC processes. This allows us to
resolve the extension of autocovariance coefficients sequence
problem in an elegant way even in the degenerate case. Then
we have extended the M EM to the degenerate case and
shown that the solution is given by a PAR process.
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