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ABSTRACT solving an optimization problem. The optimization approach
for deconvolution can be described as the determination of
certain cost function f(.) such thatApplying  the convex cost function L∞ to the blind

deconvolution of general non-minimum phase AR(u) models
is studied. A simple and realizable constraint is proposed for
the L∞ deconvolution. With this constraint, except for a gain,

the model parameter is the unique solution of the L∞

deconvolution. The strong consistency of the estimator of the
model parameter defined by the sample version of L∞ norm is

presented. An algorithm is suggested for the iterative
computation of the estimator. Simulation examples show the
proposed approach works well for apprepriate blind
equalization problems.

d
h

= −∞ < < ∞ = ∑
∈

−
∞

∞
{ , } )]d k Optimizer f h yk k n k

H
 E[ (

k=-
,(2)

where h={hk, -∞<k<∞} and H is  defined by  certain
specified normalization constraint on h.
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 as the cost function in (2), where   ⋅
l1

denotes

the l1 norm . Recently, Vembu et al. (1994) stated that with

the assumption of boundedness of xn in (1), except for some
constant gain and shift, d is the  solution of the minimization
problem

1  INTRODUCTION

  Blind deconvolution is one of the basic problems in signal
processing and has a great number of applications in
communication, geophysics, radar, ultrasonic technology,
image restoration, etc.
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The general model for blind deconvolution is The proof of this statement in that paper actually shows that
if d d

k
k0 1= =max , then d is the solution of (3). The

constraint in (3) is simple and easily realized. But,
unfortunately, the argument  cannot ensure that except for
some gain and shift, d is the unique solution of (3) when d
has nonunique maximum components in absolute value. Since

h c⊗ l1
is a convex, but not strictly convex function about

h, if the solution of (3) is not unique, then there are infinite
number of solutions for (3). The differences between these
solutions is not only confined to  some gain or time shift. This
means that solving (3) cannot uniquely determine d up to
some gain and shift. The nonuniqueness of the solution of (3),
at least in theory, decreases the validity of applying (3) to the
blind deconvolution of (1).
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(i) {ck} is a stable deterministic system response, i.e.

ck
k

< ∞∑
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∞
, which, in communications, describes the

intersymbol interference, (ii) the input signal  {xk} is a zero-
mean  i.i.d. random sequence. Denote c={ck,-∞<k<∞}. It is
assumed that there exists d={dk, ∞<k<∞ },which is called
the inverse filter of c, such that d⊗ c=δδ, where ⊗  means
convolution and δδ is a delta sequence. In the most general
case, {ck} and the probability distribution of xk are unknown.
The blind deconvolution problem for (1) is to  estimate both
of  the input sequence {xn}, and the system response {ck}.
  Numerous approaches have been developed to solve the
blind deconvolution problem. One approach is based on   In this paper, for simplicity of description, blind

deconvolution of the generalized AR(u) model is  considered.
A simple and realizable constraint is proposed for the L∞

deconvolution of the generalized AR(u) model. In this case,
d is the unique solution of L∞ deconvolution except for some

gain. Furthermore, the estimator of  d, say $d , is defined
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based on the sample version of the L∞ norm.   The strong

consistency of  $d  is  presented. Moreover, an   algorithm is

proposed for seaching $d . Some simulation results are also
presented to show that the proposed algorithm works well.

  The blind deconvolution problem for the AR(u) model (4),
now, is the estimation of d0, d1, ..., du   and the restoration of
{xn} based on observations y0, ..., yN. In general, there are no
other assumptions on the statistical properties of {xn} except
that {xn} is non-Gaussian i.i.d with zero-mean. For the
blind deconvolution of the generalized AR(u) model,
the minimization approach with convex cost functions
is to determine a certain convex  function f(.) such that

2. GENERAL AR MODEL AND ITS BLIND
    DECONVOLUTION
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(8)  A precise description of  the generalized AR(u) model

without the assumption of minimum phase is presented
below. Suppose {yn} is the stationary solution of the
stochastic difference equation

where H is some  set of h=(h0, h1, ..., hu)T with
specified normalization constraint, such as d0=1,
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where { xn } is a sequence of zero-mean non-Gaussian i.i.d
random variables defined on a  probability space (Ω, F, P), d0

≠0, dp≠0, and D z d d z d zu
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on the unit circle. It is not difficult to prove  that
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where

3. THE UNIQUENESS OF A CLASS OF L∞∞ BLIND

    DECONVOLOTIONS

  In fact, the L∞ cost function has been used to define the

prediction error estimate (Ljung (1987). In this case, the
constraint is h0=1. For the minimum phase case, the solution
of (8) with  the    L∞ cost function   is unique. But, for the

non-minimum phase case, the solution may be not unique.
The following theorem shows that for the generalized AR(u)
model, except for some gain, d is the unique solution of  L∞
deconvolution with the constraint max max
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Since D(z) has no zeros on the unit circle, the convergence

region of C(z) contains the unit circle. Thus, ck
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∞
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Furthermore, if D(z) is a polynomial with nonminimum
phase, then, it is well known that D(z) can be decomposed as
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P e j( )ω = 1. Therefore, (5) is equivalent to
Theorem 1. For the generalized AR(u) model with the

assumption that x Mn ≤ ,  h* * *( , , )= h hu
T
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unique solution of the minimization problem
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and   {wn} is a zero-mean uncorrelated sequence

with the same variance as {xk}. That is, (7) can be regarded
as a classical AR model. Unfortunately, since {yn} is not
Gaussian, the commonly-used methods cannot be used to
estimate the order u in (7).  A minimum phase version of the
approach for the identification of non-Gaussian ARMA by Lii
(1990) can be applied to the order estimation of (7). Clearly,
from d0≠0 and du≠0, we have d d u* *0 0 0≠ ≠  and  .

Therefore, the order of (7) is the same as that of (4).
Hereafter, u is assumed to be known .
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Proof:
(i) Let
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and Furthermore, because d0≠0 and du≠0, in order  that
L(h) =u+1 and h0=1, only one of q qL u L− −, ,L  can be
nonzero. This means that except for some gain and
shift, d is the unique solution of the minimization
problem
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Therefore, from the uniqueness of (23) it is asserted
that h* is the unique  solution of the minimization
problem (9).

We now prove for any h h h∈ = + ={ ; ( ) , } L u h1 10 , when h

is neither a shift of h** nor βh**, where β is a nonzero
constant,
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4. SAMPLE VERSION OF L∞∞ BLIND
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shown  that for any ( , , )h hu0 L ,

{$ }xn . In all the above simulations, the probabilities of error

are zero. Certainly, when N and SNR are small , the
probability of error will be non-zero.  The above results show
that the proposed approach works well in the simulation
examples.
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Furthermore, denote this estimator by $ ( $ , , $ )* * *h = h hu
T

0 L .

Since H  in (9) and (24) is a bounded and closed set in a u+1-

dimensional space with norm hk
k

u

=
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0
, κ is compact. From

the compactness of H  and the uniqueness of the solution of
(9) on H, we state the strong consistency of this estimator in
the following theorem.

Table 1

( $ , $ , $ )( ) ( ) ( )h h h T
0
0

1
0

2
0 =(1, 1, 1)T

N=
100

( $ , $ , $ )( ) ( ) ( )h h hf f f T
0 1 2 = (1, -1.4976, 0.3570)T

N=
500

( $ , $ , $ )( ) ( ) ( )h h hf f f T
0 1 2 =(1, -1.4999, 0.3599)T

Theorem 4. $ $ * *h h* *− = −∑ →
=l1 0

0h hk k
k

u
, w.p.1.

Table 2. N=500

4. ITERATIVE AGORITHM FOR L∞∞ BLIND

DECONVOLUTION AND SIMULATION EXAMPLES
$ , $ , $( ) ( ) ( )h h h0

0
1
0

2
0 0.33, 0.66, 1 1, 0.66, 0.33

$ , $ , $( ) ( ) ( )h h hf f f
0 1 2

1, -1.4999,
0.3599

1, -1.4999,
0.3599L∞ blind deconvolution can be implemented by solving,

iteratively, the minimization problem (24)  for the data {yn}
in a sliding window. Many iterative algorithms, such as the
simplex  algorithm, conjugate direction method and its
revised versions can be adopted.  These methods need not
calculate the derivative of cost functions for determining the
direction of descent.  the derivative of the cost function of
(24) cannot be derived in a close form. Therefore, these
methods are suitable to (24) in particular.  In the following
simulations, one version of the revised Powell's method
(William(1994)) is used . The input is an i.i.d sequence with

P{xn=1}=P{xn=-1}=0.5. D(z)=1 1 5 0 361 2− +− −. .z z

= − −− −( . )( . ).1 0 3 1 1 21 1z z  This is a non-minimum phase

AR(2) model with d0=1, d1=-1.5, and d2=0.36. N is the size
of the sample of yn. The iteration is terminated when the
difference of the cost function of two consecutive iterations is
less than ε=10-10. Denote the initial value  and the value of

( $ , $ , $ )h h h T
0 1 2  at the final iteration by ( $ , $ , $ )( ) ( ) ( )h h h T

0
0

1
0

2
0

and ( $ , $ , $ )( ) ( ) ( )h h hf f f T
0 1 2 . In the simulation, the number of

iterations from ( $ , $ , $ )( ) ( ) ( )h h h T
0
0

1
0

2
0  to ( $ , $ , $ )( ) ( ) ( )h h hf f f T

0 1 2  is

about 7-10.  All the results for the noiseless case are
presented in Table 1 and Table 2. Then, we use the method to
the noisy data.  The noise is additive zero-mean Gaussian
noise and the signal-to-noise ratio (SNR) equals 35.2 dB.
The simulation results for this case is shown in Table 3.  For

all above cases, we use  $ ( ) $ $ $( ) ( ) ( )H z h h z h zf f f= + +− −
0 1

1
2

2

as the equalizer . Applying  the hard decision to the output of
the equalizer we obtain  the estimation of {xn}, say {$ }xn .

The probability of error is evaluated based on {xn} and

$ , $ , $( ) ( ) ( )h h h0
0

1
0

2
0 random

(normal)
random

(uniform)
$ , $ , $( ) ( ) ( )h h hf f f

0 1 2
1, -1.4999,

0.3599
1, -1.4999,

0.3599

Table 3. N=500, SNR(signal to noise ratio)=35.2 dB

$ , $ , $( ) ( ) ( )h h h0
0

1
0

2
0 0.33, 0.66, 1 random  (normal)

$ , $ , $( ) ( ) ( )h h hf f f
0 1 2

1, -1.4619,
0.3117

1, -1.4674, 0.3181
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