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ABSTRACT
We present a new stabilized zero-crossing representation with a
salient feature that the signal reconstruction problem reduces to a
typical minimum-norm optimization problem, the solution of
which is formulated as a linear simultaneous equation, and develop
an iterative algorithm for signal reconstruction. Moreover, we
extend them to the two-dimensional case. Furthermore, we
introduce a threshold operation based on edge intensity to reduce
the amount of information in the stabilized zero-crossing
representation, and experimentally demonstrate that the threshold
operation works well.

1   INTRODUCTION
Many previous studies have proved that multiscale zero-
crossing representations are well adapted for extracting local
important features such as edges from images. The
justifiability of multiscale zero-crossing representations
originate in the Logan's theorem [1]. The multiscale zero-
crossing representation is complete, but not stable in the
sense that a small perturbations of the representation may
correspond to an arbitrary large perturbation of the original
signal.

To stabilize the reconstruction of a signal from its zero-
crossings, recently Mallat has developed the stabilized
waveform representation based on both zero-crossings of a
dyadic multi-scale wavelet transform with the property of
local second derivative operation and additional information
such as the value of the wavelet transform integral between
two zero-crossings, and he conjectured that the stabilized
zero-crossing waveform representation might be complete
and stable [2]. In addition, he has formed an algorithm for
reconstructing signals from the stabilized zero-crossing
representation. The Mallat's signal reconstruction algorithm
based on the POCS (projections onto convex sets)
formulation iterates on a nonexpansive projection onto a
convex set and an orthogonal projection onto a Hilbert sub-
space, and hence the convergence is guaranteed. Since then,
many studies have described variants of a stabilized zero-
crossing waveform representation. For instance, some
studies have analyzed the variant which as a complement of
information uses a position and amplitude of each local
extremum that is defined as maximum absolute value lying
between two consecutive zero-crossings [3]. For almost all
the variants presented so far, signal reconstruction problems
have been formulated as a non-linear optimization problem,
and the resultant signal reconstruction algorithms are based

on the POCS formulation like the Mallat's reconstruction
algorithm. With the POCS-based alternate projection
algorithms we can reconstruct signal waveform from the
stabilized zero-crossing representation with high fidelity.

These types of zero-crossing representation is considered
almost complete, but they have common drawbacks. The
first drawback is that it is neither straightforward nor trivial
to extend their signal reconstruction algorithms from one-
dimensional signal to two-dimensional signals. The
difficulty of the extension results from the non-linearity of
the reconstruction problems. The second drawback is that
for almost complete signal reconstruction the positions of
zero-crossings and/or local extrema should be represented
with fractional sampling interval accuracy, which makes it
difficult to apply the stabilized zero-crossing representations
to practical image processing. The third drawback is that the
POCS-based alternate projection algorithms for signal
reconstruction involve a large amount of computational
efforts.

To cope with the above-mentioned drawbacks, we present
a new stabi l ized two-dimensional  zero-crossing
representation in the wavelet transform domain. For the new
stabilized zero-crossing representation, we represent the
positions of zero-crossings as a certain sampling point, and
to stabilize the representation we add a complement of
information that is defined as an inner product between an
original signal and an integrated basis function of the dilated
and shifted basic wavelet function at each zero-crossing
point. The new stabilized zero-crossing representation has a
salient feature that the problem of how to reconstruct signals
from it reduces to a typical minimum-norm optimization
problem, the solution of which is formulated as a linear
simultaneous equation [4]. However, the dimension of the
resultant linear simultaneous equation is very large, and
hence we employ an iterative relaxation method for solving
the simultaneous equation.

2   WAVELET  TRANSFORM
The wavelet transform is performed by applying dilation and
translation to a basic wavelet function ψ (•) and then
estimating an inner product between a given input signal f (•)
and the distorted wavelet function:
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When we set a = 2j, b = n, where j and n are integers, W
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edge model function included in an original signal f (•).

4   SIGNAL  RECONSTRUCTION
The problem of how to reconstruct signals from the new
stabilized zero-crossing representation reduces to a typical
minimum-norm optimization problem where a vector with a
minimum norm is selected as an optimal solution vector
under the constraint that inner products of a solution vector
with the multiple basis vectors are given. The solution of the
minimum-norm optimization problem is easily formulated
as a linear simultaneous equation. In the case of the signal
reconstruction problem, however, the dimension of the
resultant linear simultaneous equation is equal to the
number of detected zero-crossings, and too large to solve the
equation directly, non-iteratively. Instead, we employ an
iterative relaxation method for solving the equation. The
mathematical theory for linear operators guarantees that the
iterative signal reconstruction algorithm has the
convergence property.

The iterative signal reconstruction algorithms is as
follows.
[ Iterative Signal Reconstruction Algorithm ]
(1) Adopt a smoothed signal at the coarsest scale j = M as an

initial function of a reconstruction signal R ( x ).
(2) Apply the procedures of the steps, (2-1) and (2-2), to all

the zero-crossings at all the scales.
(2-1) For each zero-crossing Z

i
 at the scale j, compute an

inner product Q
i
 between the present reconstruction

signal R ( x ) and the integrated basis function σ
j
 ( x ; Z

i
 ).

(2-2) Update the reconstruction signal R ( x ) as  follows:

R x R x P Q x Zi( ) ← ( ) + −( ) ⋅ ( )i i jσ ; (4)
(3) Repeat the above operations of the step (2), until

convergence.

5   EXTENSION  TO  TWO-DIMENSIONAL
SIGNALS

We extend the new stabilized zero-crossing representation
and the iterative signal reconstruction algorithm to the two-
dimensional case.

For the extension, we employ the multiscale pyramidal
wavelet transform as a two-dimensional multiscale wavelet
transform. Firstly we decompose an input signal into four
multiscale dyadic wavelet transforms W

LL
( x, y ), W

LH
( x, y ),

W
HL

( x, y ), W
HH

( x, y ) by performing horizontal wavelet
transform and vertical wavelet transform sequentially, and
then we compose an objective multiscale pyramid wavelet
transform W

H
( x, y ) by reconstructing it from only the three

different wavelet transforms W
LH

( x, y ), W
HL

( x, y ), W
HH

( x,
y ). The multiscale pyramidal wavelet transform has the
same data structure as the Laplacian pyramid image
representation [5], and has the property of perfect
reconstruction.

For a given two-dimensional signal, zero-crossings of its
multiscale pyramidal wavelet transforms make zero-
crossing lines. We represent the zero-crossing lines with
integral sampling accuracy, that is to say, for the true zero-
crossing line we substitute a sequence of the sampling
points which best approximate to the true position.

) is reduced to the discrete wavelet transform with the shift
invariant property. We refer to this type of wavelet
transform as dyadic multiscale wavelet transform. The
dyadic multiscale wavelet transform is more redundant
than the usual standard discrete wavelet transform where a
= 2j, b = n × 2j.

The dyadic multiscale wavelet transform has the perfect
reconstruction property that an original signal is perfectly
reconstructed from the wavelet transforms at all the scales j
= 1, 2,..., but it is not feasible to use the wavelet transforms
at all the scales. Instead, we limit the scale j within the
range j = 1, 2,..., M, and reconstruct an original signal from
both the wavelet transforms at the scales j = 1, 2,..., M and
the smoothed signal at the coarsest scale j = M.

In this paper we use a basic wavelet function ψ (•) which
is defined as a second derivative of a short-length
smoothing function and forms a bi-orthogonal basis with
the properties of the linear phase and the local second
derivative operation. In this case, the detection of zero-
crossing points corresponds to the extraction of edges. In
order to reduce the detection of false zero-crossing points
caused by ripples of the basic wavelet function, we employ
a short-length smoothing function derived from the B-
spline function [3]. The unit impulse responses h

L 
(•), h

H 
(•)

of the band-splitting low-pass and high-pass filters used for
the dyadic multiscale wavelet transform with the second
derivative operation are as follows:
(a) Low-pass analysis filter  :
     {  h

L
 ( 1 ) = 0.25 ,     h

L
 ( 0 ) = 0.50 ,   h

L
 ( -1 ) = 0.25     }

(b) High-pass analysis filter  :
     {  h

H
 ( 1 ) = - 0.25 ,  h

H
 ( 0 ) = 0.50 ,   h

H
 ( -1 ) = - 0.25  }

3   ZERO - CROSSING  REPRESENTATION
In the new stabilized zero-crossing representation, we
represent the position Z

i
 of each zero-crossing point with

integral sampling interval accuracy, that is to say, for the
true position of each zero-crossing point we substitute the
sampling point which is nearest to the true position. In
order to stabilize the reconstruction of a signal from its
zero-crossings, we add a complement of information that is
defined as an inner product P

i
 between an original signal f (

x ) and an integrated function σ
j
 ( x ; Z

i
 ) of the dilated and

shifted basic wavelet function ψ ( ( x - Z
i
 )  /  2j ) at the

position Z
i
 of each zero-crossing point:

P f x x Zi j i= ( ) ( ), ;σ (2)
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where N is the normalization factor.
When we use a basic wavelet function ψ (•) with the

second derivative property, the inner product defined by
Eq. 2 corresponds to applying a first derivative operation to
an original signal f (•). Moreover, the definition of the
integrated basis function σ

j 
(•) is obtained by applying

wavelet transformation to a unit step function U (•); hence
the function σ

j 
(•) serves as an edge model function and the

value of the inner product P
i
 corresponds to intensity of the



Moreover, as a complement of information, at the position Z
i

= ( Z
i,x

 , Z
i,y

 )t of each approximate zero-crossing point on the
zero-crossing line at the scale j, we employ the inner product
S

i
 between an original two-dimensional signal f ( x, y ) and

the basis function ρ
j
 ( x, y ; Z

i
 ) which works as a first

derivative operator.

S f x y x yi j i= ( ) ( ), , , ;ρ Z (5)

As for the basis function ρ
j
 ( x, y ; Z

i
 ), we prepare four

different candidate functions for the basis function ρ
j
 ( x, y ;

Z
i
 ) in advance, and then we select the proper function from

the four candidates according to the connection of
neighboring approximate zero-crossing points in the vicinity
of the position Z

i
 on the zero-crossing line. We define the

four different candidate functions γ
j
 ( x, y ; Z

i
 ; n

1
, n

2
 ) with

the two parameters  n
1
, n

2
 :
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where we choose the proper set of values for the two
parameters  n

1
 , n

2
 from the four possible sets according to

the connection of neighboring approximate zero-crossing
points as follows:
(a) Horizontal connection : (  n

1
, n

2
 ) = ( 1, 0 )

(b) Vertical connection     : (  n
1
, n

2
 ) = ( 0, 1 )

(c) Diagonal connection with the upper right direction :
(  n

1
, n

2
 ) = ( 1, 1 )

(d) Diagonal connection with the lower right direction :
(  n

1
, n

2
 ) = ( 1, -1 )

(e) Vague connection :  We use the two different basis
functions defined by the two sets of parameter values, (  n

1
,

n
2
 ) = ( 1, 0 ), ( 0, 1 ), and compute the two different inner

products with the chosen two basis functions.
The function η

j
 ( u

1
, u

2
 ; Z

i,1
, Z

i,2
 ) appeared in the

definition of the candidate function γ
j
 (•) is defined by Eq. 6.

The function η
j
 ( u

1
, u

2
 ; Z

i,1
, Z

i,2
 ) works as a first derivative

operator along the Z
i,1

 - axis, whereas it behaves as a
Gaussian smoothing operator along the Z

i,2
 - axis. We

introduce the Gaussian smoothing operator to suppress the
noticeable blockwise artifacts in the reconstructed image.

The two-dimensional iterative signal reconstruction
algorithm differs from the one-dimensional algorithm in that
we choose the proper basis function for the inner product
according to the connection of neighboring approximate
zero-crossing points on the zero-crossing line and
additionally in that in the case of vague connection we use
two different basis functions and their corresponding two
different inner products, but  does not differ in the general
outline of the iterative procedure.

The two-dimensional signal reconstruction algorithm
provides an almost perfectly reconstructed image. If we
measure the fidelity of signal reconstruction with the rms
signal-to-noise ratio (SNR ) computed with respect to the
original image, the two-dimensional algorithm achieves
signal reconstruction with extremely high fidelity, typically
60 dB or more. High-fidelity reconstruction with SNR  of 55
dB or more involves a large number of iterations, typically
several thousands, but the algorithm gives a reconstruction
image with subjectively high picture quality even after some
dozens of iterations, which is a especially preferable
characteristic for its practical applications to image
processing.

6   DATA  COMPRESSION  OF  ZERO - CROSSING
REPRESENTATION

To reduce the amount of the complementary information in
the stabilized zero-crossing representation, we introduce a
threshold operation based on edge intensity which is defined
as the absolute value of the foregoing inner product S

i
 at each

approximate zero-crossing point. We eliminate the
complementary information for the approximate zero-
crossing point whose edge intensity is below the threshold
value:

if   S
ji
j< ⋅

δ
Tr

(8)
,    then  eliminate that zero-crossing point Zi

where the threshold value is dependent on the scale j and δ
j
 is

the maximum of the absolute value of the inner product S
i
 at

that scale. The threshold operation makes much of coarse
edges with high edge intensity and reserves them, whereas it
makes little of fine edges with weak edge intensity and
eliminates them.

Fig. 1 gives the value of SNR of the image reconstructed
from the compressed zero-crossing representation after n
iterations, where the number of scales M is set to 4 and the
value of T

r
 and their corresponding data compression ratios

C
r
 are as follows:
T

r
 = 0.05   ( C

r
 = 51.6 % ),     T

r
 = 0.20   ( C

r
 = 21.7 % )

T
r
 = 0.50   ( C

r
 = 10.4 % ),     T

r
 = 0.80   ( C

r
 =   6.0 % )

Fig. 2 shows the original image, whereas Fig. 3 shows the
reconstructed images. As shown in Fig. 3, as we increase the
value of T

r
, smear noise grows wider and clearer in the

reconstructed image, and from the standpoint of picture
quality the value of T

r
 should be set to below 0.2.

At present we are studying the application to various
image processing. The target applications include
restoration of true lightness under complex illumination
conditions, image compression and so on. We will give a
detail of its target applications at the presentation.

7   CONCLUSIONS
We present a new stabilized two-dimensional zero-crossing
representation and an iterative reconstruction algorithm with
which we can almost perfectly reconstruct an original image.
Moreover, we introduce a threshold operation based on edge
intensity to reduce the information amount of the zero-
crossing representation, and demonstrate that it works well.



(c) Reconstructed Image  ( T
r
 = 0.50,  SNR = 32.6 dB )
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Figure 3     Reconstructed images from the compressed stabilized zero-crossing representation of the test image "Lady".

Figure 2     Original test image "Lady".

(d) Reconstructed Image  ( T
r
 = 0.80,  SNR = 30.4 dB )

Figure 1  SNR  versus the number n  of iterations for image
reconstruction from the compressed zero-crossing
representation of the test image "Lady".

 (b) Reconstructed Image  ( T
r
 = 0.20,  SNR = 36.4 dB )(a) Reconstructed Image  ( T

r
 = 0.05,  SNR = 44.2 dB )
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