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Abstract
Methods are investigated to improve the registration of
images corrupted by rigid displacements using the Least
Mean Square (LMS) algorithm. Results show that LMS
adaptive registration (LMSAR) is effective for small transla-
tional displacements, but fails for large translational dis-
placements where the correlation between the rotation data
sets is too weak. In an attempt to improve the robustness of
LMSAR, various methods are investigated and a modified
LMSAR technique is introduced. The modified LMSAR is
compared with the Fourier Shift Theorem (FST) for clean
and noisy images where the LMSAR accuracy is similar to
the FST for clean image. As expected the LMSAR appears
more susceptible to noise, but the LMSAR offers reduced
computation over the FST for circumstances involving
searches over a large angular range.

1. Introduction

Image registration is primarily concerned with the alignment
of image features, or primitives, in two images. It has be-
come an important area for machine vision and image pro-
cessing research during the last decade and is required in
many areas including remote sensing,  medical scanner and
military applications [1]. The most common registration
problems can be categorized by transformations, such as
rigid, affine, perspective, and polynomial, where the misre-
gistrations can be further categorized as global or local. The
tools used to tackle the rigid transformation problem are
amongst the most basic and are frequently used for simple
registration problems. Rigid transformations consist of
translational  displacement (TD) and rotation. This paper
presents an adaptive solution to the registration of rigid trans-
formations.

Current techniques available include cross–correlation, tem-
plate matching, and Fourier methods [2]. Cross–correlation
and template matching are computationally intensive where
all possible translations, rotations and scaling have to be im-
plemented,  thus Fourier methods are often favoured. The
heart of the Fourier methods is the Fourier Shift Theorem
(FST) relating the phase of the cross–power spectrum to the
displacement  between two images. Castro and Morandi [3]
described a method to correct both translation and rotation

between two images using the FST, and this is used here as
a benchmark to test the new LMS registration approach.

An adaptive method employing the LMS algorithm [4] was
presented by Smith and Campbell [5] to register rotated
images. This method consists of two components: firstly lo-
cating the centre of rotation (COR) between the two images,
and secondly using the LMS algorithm to minimise the error
between data sequences extracted from the two images. The
rotation is determined from the position of the largest con-
verged filter coefficient and it was shown that the LMS algo-
rithm was as effective as the FST for registering rotation
given the correct location for the COR. The location of the
COR however was often not sufficiently accurate to ensure
correct estimation of rotation. This work has been expanded
to develop an adaptive solution that registers both transla-
tional and rotational displacements ie. rigid transformations,
and does not require ‘a priori’ information regarding the
COR location. 

2. LMS adaptive registration

Translational displacement can be found using the TDLMS
algorithm [6] by examining the weight coefficients after con-
vergence where  the location of the largest weight coefficient
represents the translational displacement. Rotation can simi-
larly be found by using an LMS algorithm on a set of data ob-
tained through sampling at a fixed radius through 360 de-
grees [5]. When both TD and rotation are present, the
correlation for both the TD data pair and rotation data pair
is weakened.
Simultaneous estimation of translation and rotation using
LMS adaptive registration (LMSAR) is described here,
where adjustments are made to the misregistered image at set
intervals during the process (Figure 1). The TD is determined
from a finite window placed in the centre of each image to
reduce the effect of rotation, and rotation is estimated by pro-
cessing data obtained by mapping the rotation to a translation
about the image centre using the average pixel intensity Iave
across a radial scan rmin to rmin+n. 
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During the first update to the misregistered image,  if the
rotation exceeds a preset threshold the TD is not corrected,
otherwise the translational displacement detected is com-
pared against a TD threshold. If the TD detected exceeds the
threshold it is re–determined using a larger filter, where if the
same result is returned using a larger filter both translational
displacement  and rotation are corrected, otherwise rotation
alone is corrected. Table 1 shows the results of applying LMS
adaptive registration to displaced copies of ’Lenna’ (Figure
2) where 20 sweeps over the misregistered image were made,
corresponding to four updates. With a rotation of 40� dis-
placed by a TD of 1,5 the detected TD was 4,3, which is cor-
rect as the TD was rotated during the first update. For larger
TDs, errors in the rotation estimate were introduced in the 1st
estimate and propagated through further updates to the final
result. Local averaging to increase correlation is investigated
in the next section to try and make the rotation estimate more
accurate.
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Table 1: Basic LMS adaptive  registration of ’Lenna’
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3. LMS adaptive registration modifications 

The local averaging is described by 
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where f is the image, n is the local area size, and int(m) takes
the integer part of m. The location of the smallest mse within
a ±50� range was examined for test images ’Lenna’, ’Trinity’
and ’Salonika’ displaced by 40� rotation and TDs of up to 20
rows by 20 columns. A local area n < 8 made no difference
to the minimum mse location; n=8,16 moved the location of
the minimum mse closer to the true rotation, but only by one
or two samples (2.8125� angular step size for this test); the
averaging effect of n>16 was found to introduce unaccept-
able errors. If the rotation is not a multiple of the angular step
size there will be a maximum error of ±0.5*angular step size.
If the angular sampling rate is increased, the  rotation esti-
mate error is reduced due to smaller angular quantisation.

It has been observed that with data which has been translated
and rotated the LMS algorithm does  not always converge to
the smallest mse location. A variable step–size LMS algo-
rithm [7] was investigated but at present no improvement in
accuracy has been found.

The LMSAR was modified for the later test by: 1) Estimating
the initial rotation using a local average over 16 by 16 pixel
blocks; 2) Correcting TD alone in the second update if it had

not been corrected in the first since the TD estimate will be
more accurate due to smaller rotation, while the rotation esti-
mate will still be vulnerable due to TD.

4. Fourier Shift Theorem

If g(x+∆x,y+∆y) is a displaced copy of f(x,y) of ∆x rows and
∆y columns, their Fourier transforms are related by

F(wx, wy) � G(wx,wy)e�j(wx�x�wy�y) (3)

Both images have the same Fourier magnitude, with only the
phase changing. This change in phase is directly proportional
to the translational displacement, and is the basis for the
Fourier Shift Theorem (FST) [2].

F(wx, wy)G*(wx, wy)
|F(wx, wy)G*(wx, wy)|

� e(wx�x�wy�y) (4)

Equation (4) shows the calculation of the cross–power spec-
trum phase where G* is the complex conjugate of G. If the
inverse Fourier transform of this phase is taken, the result
will be an image that is approximately zero everywhere ex-
cept at the location of the displacement, which is an impulse.
De Castro proposed a two–stage approach to registering
images that contain both translational displacement and rota-
tion [3]. If the phase of the cross–power spectrum is calcu-
lated as a function of angular rotation φ, and using polar co–
ordinates for simplicity, equation (4) becomes

F(r, �)G*(r, �� �)
|F(r, �)G*(r, �� �)|

� H(r, �;�) (5)

From equation (5), if an accurate estimate is made of the rota-
tion φ, then the function H reduces to that of equation (4). De
Castro adjusts the angle φ, where for each adjustment the in-
verse Fourier transform of H(.) is determined. The angle that
returns the largest impulse response in the spatial domain is
accepted as the angle of rotation between the two images,
and the peak location identifies the TD.

5. Experimental results

’Lenna’, ’Trinity’, ’Salonika’ and ’Turing’ are rotated by 40�

and displaced by various translational displacements (Fig 2).
The modified LMSAR and the FST are applied to the  misre-
gistered images for clean and noisy environments, where
additive Gaussian noise of variance 900 was used for the
noisy case. The angular range searched by both the FST and
modified LMSAR was ±50�, and a 41*41 filter was used in
the LMSAR translation estimate for images of shifts 5*5 and
10*10,  while a 61*61 filter was used for shifts 20 by 20. For
the 61*61 filter, the image area over which it was moved had
to be enlarged to allow a sufficient number of iterations.
Table 2 shows the results, where the rotation was corrected
about the image centre before correcting the TD. Due to the
order of corrections, the TD present after the correction of
rotation is 7 rows down, 1 cols right (5 by 5); 14 rows down,
1 col right (10 by 10); 28 rows down 2 cols right (20 by 20).
The TD quoted for the modified LMSAR in table 2 does not
take account of rotational adjustments beyond the second 



Figure 2 – Test images

(a) ’Lenna’ (b) ’Trinity’

(c) ’Salonika’ (d) ’Turing’

update, resulting in small errors.

The FST identifies the correct displacement for all clean
images, while the modified LMSAR returns answers similar
to the FST, although there are errors for some images for both
rotation and TD estimates using the modified LMSAR ( ±1�

, ±1 row/column). When registering noisy images, both
modified LMSAR and FST are affected, however the modi-
fied LMSAR is shown to be more susceptible to noise than
the FST. This is clearly seen for the noisy ’Turing’ image dis-
placed by 5 rows and 5 columns where the modified LMSAR
has an error of 0 row 2 columns and –5� compared to 1 row
1 column and –1� for the FST. This was expected, since for
large levels of noise the LMS algorithm will reduce the mse
by filtering the noise rather than registering the images.

6. Conclusion

The modified LMSAR has been compared against the FST
registering clean and noisy images. The order of filter used
in the LMSAR is a trade–off between accuracy and complex-
ity. For clean images the modified LMSAR accuracy is simi-
lar to the FST accuracy for most images used and had small
errors for others, but for a TD of 20 pixels by 20 pixels the
LMSAR failed to consistently identify the correct displace-
ment, thus at present is only applicable to problems contain-
ing small TDs. In a noisy environment the modified LMSAR
exhibits larger errors than the FST. Further updates for
LMSAR when processing both clean and noisy images may
reduce the error.  Further work will be carried out for situ-
ations when  a large number of rotations have to be exam-
ined, where the LMSAR may require fewer computations
than the FST since the latter performs an exhaustive search
across all candidate rotations.
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Figure 1 – LMS adaptive registration (LMSAR)
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Table 2 : Modified LMSAR Vs FST
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