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ABSTRACT

In image contrast enhancement [2, 4, 5], quadratic and
more generally polynomial filters are a very popular
class of nonlinear filters. These filters exhibit good per-
formances in terms of visual quality, but present some
drawbacks such as the elimination of usefull information
when using a fixed filter. In this paper we propose a new
family of adaptive quadratic filters, where a weighted fil-
ter mask i1s adaptively determined according to the min-
imization of a prediction error. This filter is then used
to enhance locally the image contrast. The results we
proposed point out the improvement provided by these
new filters in comparison with recent approaches [4, 2].

1 INTRODUCTION

The main problem in the field of image enhancement is
to find operators which are capable to sharpen the de-
tails of an image but are reasonably insensitive to noise.
Moreover the details enhancement must be stronger in
bright regions where human visual system is less sensi-
tive to luminance changes (Weber’s Law [3]). Ramponi
[4] and Mitra [2] proposed an improvement of the classi-
cal Unsharp Masking (UM) method [3] by using a com-
plete quadratic filter to enhance text document, or by
introducing a generalization of the Teager’s algorithm.
These techniques which give high quality enhancement
for natural images still suffer from their weak noise ro-
bustness and are poorly adapted to periodic textured
images, where a fixed filter often eliminates useful infor-
mation. In order to be less sensitive to noise, Ramponi
proposed a cubic filter which allows to perform a sharp-
ening action only if the processing mask is located across
the edge of an object [5].

The approach presented in this paper is based on a non
causal adaptive quadratic filter, i.e. a filter formed by
combining linear and quadratic operators whose coef-
ficients are adaptively determined. The linear part of
the filter smoothes the data, while the quadratic part
achieves an enhancement in accordance with the char-
acteristics of human vision. The noncausality and the
adaptivity of the filter mask allows to take into account
all the surrounding pixels highly correlated to the cur-
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rent pixel to be filtered, and then to give better results
in the case of periodic textured images.

2 ADAPTIVE NON CAUSAL FILTER MASK

2.1 Salembier adaptive approach

The idea of adapting the filter mask is due to Salembier
for adaptive rank order based filters [1]. This procedure
consists in defining a search area, and in assigning a
coefficient to each possible location. Finally the current
filter mask support is obtained by thresholding the set of
coeflicients : if a coefficient is greater than the threshold,
the corresponding location is considered as belonging to
the unweighted filter mask. An adaptation process is
used to optimize the filter mask support by modifying
the set of continuous values of the search area.

2.2 Principle of the new adaptive approach
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figure 1 : filter’s structure

The main difference between our approach and the
Salembier approach is that we use a weighted filter
mask. We define the non causal filter mask as a weighted
window of size K L centered on the current pixel (n,m).
A coefficient m; ; of M is viewed as a level of confidence
for the corresponding location to belong to the mask.

M ={m;;€l0,1]/i,je KxL} (1)

All the pixels (i,j) belonging to to the mask are taken
into account according to their weight m; ;, and no
thresholding is necessary to obtain a binary mask as in
the Salembier approach. Our algorithm operates in two



steps : the calculation of the coefficients m; ; and the
quadratic filtering implementation. The general struc-
ture is given in figure 1 : the coefficients are adaptively
calculated using a prediction error, and the quadratic
filter is performed using these coefficients.

According to the choice of the predictor and the
quadratic filter, one can derive various schemes of im-
plementation from the generic filter structure presented
in figure 1.

2.3 Adaptation process

As described in figure 1, the set M of coefficients {m; ;}
is calculated in order to minimize a prediction error.
The predicted value p(n,m) is computed as follow :

Dijems i j Tij

Zi,jeM* mq;

(2)

p(n,m) =

with «; ; pixel at position (1,j) in the mask, and M* =
p(n,m) is in fact a weighted mean over the mask M*
(excluding the current position (n,m)). Two predic-
tion error criteria J1 and J2 are then considered, the
Mean Square Error (MSE) and the Mean Absolute Er-
ror (MAE).

JU= Blpn,m) —a(nm)?] (MSE) (3
J2 = El|(p(n,m) — 2(n,m)|] (MAE) (4)
A steepest descent algorithm [6] is used to update the

set of coefficients at step k in order to minimize the cor-
responding prediction error criterion (J1 or J2) :
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where uf}'l are temporary values which will be used

later to compute mf‘l»'l by using a scaling transforma-
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tion.

So, according to the choosen criterion, we obtain two
updating algorithms :

MSE :
pift =mi;+ 2se
p(na m) - xi, i
(p(n,m) — x(n,m))(ziﬁ) (6)
igeM* " j
MAE :
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where Ayrsgp and Aprap are convergence factors, and
sgn the sign function. These two equations do not re-
spect the constraint m; ; € [0,1]. So at each iteration,
the minimum and maximum value of m; ; is searched,

and all the coefficients are scaled by the linear transfor-
mation :

min, = min {uf') (8)

maz, = max{u;}"} (9)
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Then all the coefficients mf}"l take values in the range
0-1, which guarantee the convergence of the algorithm.

3 QUADRATIC FILTERS

3.1 Second order Volterra filter

The output y(n,m) of a second order Volterra filter is :
y(n,m) = yr(n,m) + ayg(n, m) (11)

where o is a constant and yr, yg respectively are the
linear and the quadratic component of the output, ex-
pressed as

yr(n,m) = > hijui; (12)
iJEM

voln,m) = Y 3w ki jan (13)
i jEMEIEM

Our operators are defined by the linear filter coefficients
h; ;, the quadratic filter coefficients w; ; x 7, and the scal-
ing factor «. As observed in [4], to ensure the preser-
vation to the output of a uniform luminance input, the
following conditions must hold :

> hig=1 and > > wijei=0 (14)
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3.2 Gradient Like Enhancement

As mentionned in section 2, we propose filters whose
coefficients depend on the set {m; ;} viewed as levels of
confidence (m;; — 1 for pixels similar to the current
pixel value, respectively m; ; — 0 for the others). The
first type of filter, called Gradient Like Enhancement
(GLE) is defined by the following coefficients :
R
hij = _ n) (15)
! Z(i,j)eM mi,j

mase = {5 i k0 # 0.0 '

a a predefined scaling factor (17)

with m = ﬁz(m’)eM m; ; mean value of the set

(mij)Gi.jyent-
yr (n, m) (linear low pass filter) is a weighted average on
M, which takes into account the most likely pixel values,



and performs the noise reduction on the background re-
gion. To explain the gradient behaviour of the quadratic
term, we write equation (13) as follows:

vo(n,m) = z(n,m) > (mi;—m)wi;
(i,5)eEM
= z(n,m)x G (18)
where
G = Z (mi; — M) ;
]
= Z mi ;= Mg+ Y (mi;— M)
s

= Z mi j —mle; ;= lmij —mlwi (19)
i

C2
and
c; = {(Z,j) S M/mm' Zm}
Cy = {(1,j) € M/m;i; <m} (20)

G is a local difference between the pixels the most simi-
lar (C1) to the current pixel and those less similar (C).
It can be interpreted as a local estimate of the gradient.
The multiplication by z(n, m) yields a stronger enhance-
ment for bright pixels which i1s in accordance with the
Weber’s law. In order to improve noise robustness, we
can replace z(n,m) by yr (n,m), and the filter equation
becomes :

y(n,m) =yr(n,m)[1 +« Z (my; —
(i,5)eEM

m)z; ;] (21)

3.3 Laplacian Like Enhancement

In this section we propose an estimation of the local
laplacian with the following quadratic coefficients :

Yo Imig—m| (i,4,k,1)=1(0,0,0,0)
_ k1) = (0,0
0 otherwise

yr(n,m) and « are the same as in the previous section.
The quadratic operator is then :

yo(n, m) = x(n, m)( Z |m; ; — m|z(n, m)

(i.j)eM*
— Y fmay =) (22)
(i.j)eM*
Lets define a; ; = |m; ; — m|, and consider a 3 by 3

mask M, the convolution mask of the difference is then
comparable to a laplacian mask :

—ai —a19 —a13 —a —a —a
—as1 Y. aj; —a3 |=|—a 8a —a (23)
—asi —asz9 —ass —a —a —a

Thus the quadratic filter behaves like the local-mean-
weighted highpass filter proposed in [2], and is then
still in accordance with the Weber’s law because of the
multiplication by x(m,n) (which could be replaced by
yr(n, m) as explained in 3.2).

4 APPLICATION TO IMAGE ENHANCE-
MENT

The proposed filter scheme can be used to enhance
blurred and noisy images. Results are first presented
on the ”canevas” image shown in figure 2. If we process
such an image by the classical quadratic operators (fig-
ure 3.a: Ramponi’s quadratic filter [4] with d=70, and
figure 3.b: Mitra’s quadratic filter [2] with a = 512),
we observe a noise amplification. Images obtained with
GLE and LLE filters appear more convincing in terms of
contrast enhancement (figures 3.c: GLE and LLE meth-
ods). The sharpening effect of three operators can be
observed on the grey levels along a line of the output
images as shown in figure 4. It should be observed that
GLE yields better detail sharpening and noise smooth-
ing.

The second application proposed is the iterative filter-
ing of the ”canevas” image corrupted by a zero-mean
gaussian noise with standard deviation 60. Classicaly
additive gaussian noise 1s removed by applying low pass
filters, but at the expense of edge blurring. So it seems
promising to process the image by a low pass filter to
remove the noise; and a high pass filter to sharpen the
edge avoiding noise amplification. We then have itera-
tively filtered the noisy image with o = 1000, A = 0.01
and M = [5 % 5] (see fig. 5), and after four filtering we
can observe the effective sharpening effect without noise
amplification.

5 CONCLUSION

In this paper, two new quadratic filters for image en-
hancement have been presented. The novelty of our
approach is the use of an adaptive filter mask in the
quadratic part. The improvement introduced by our two
filters has been shown through the filtering and enhance-
ment of noisy and non noisy periodic textured images
for which other recent quadratic filters failed.
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