Invariance properties of integral transforms of images.
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ABSTRACT

In this paper previous results on invariance
coding are extended in two ways: 1) by proving
that there exists a formal relation between the
kernel of an integral transform ”invariant in the
strong sense” and the eigenfunctions of the op-
erator of the transformation 2) by showing that
necessary and sufficient conditions for invari-
ance with respect to one-parameter Lie trans-
formation groups can hold for a class of two-
parameters transformation groups, and by pro-
viding a procedure to compute an integral trans-
form ”invariant in the strong sense” with respect
to these transformations.

INTRODUCTION

The problem of invariance is central to pattern
recognition: in a fundamental sense invariant
recognition 1s precisely what a recognition sys-
tem must be able to achieve. The ability of any
visual system to perform invariant to a given
transformation is determined by the way the vi-
sual input is encoded, or internally represented,
by the system. In the Cartesian domain (z,y)
an image is defined by a function from R? to
R, f: a2,y — z where z = f(x,y) is the light
intensity at the point x,y. Let T, be a one-
parameter Lie transformation group, with pa-
rameter a, acting on f; the transformed image
is given by Tof(x,y) = f(Tax,Tay). In gen-
eral Ty f # T f if a # d’, and so this represen-
tation is not invariant. Invariant coding deals
with the problem of finding representations of

the pattern, in some space (u,v), that are in-
variant under certains transformations and pre-
serve the uniqueness of the representation. This
type of invariance has been called “invariance in
the strong sense” (Ferraro, 1992). An integral
transform

G(f)=Gluv) =
//f(x,y)k(x,y;u,v)dxdy:

Alu, v)explig(u, v)]

is said to be invariant in the strong sense, under
the action Ty, on f, if A(wu,v) is constant and the
phase ¢ varies in a simple additive way (Ferraro

and Caelli, 1988, Ferraro, 1992), that is

(1)

G(Tof) =Gu,v) =

Alwv)explild(uv) +ual),  (2)

so that the constancy of A(u,v) ensures invari-
ance and ¢ encodes the transformational state.
In general, it has been proven (Ferraro and
Caelli, 1988, Ferraro, 1992) that if an image f is
trasformed by the action of two one-parameter
Lie groups of transformation 7T,, S, an integral
transform of f invariant in the strong sense, ex-
ists if and only if X, X, vector fields of T, and
Sy respectively, commute and are linearly inde-
pedent (the commutativity of X,, X3 implies the
commutativity of T,,S;). Furthermore it has
been shown that the invariant integral transform
is of the form



G(f) =
/ / F(, yexp{—ilun + €} T (0, € 2, )| dedy

://f(x,y)exp{—i[un-I-Uf]}dﬁdfa (3)

where 7, ¢ are canonical coordinates of Ty,
and S, (that is, in the coordinate system (n,£)
the actions of T, and S, are translations) and
|7(n,&; 2, y)| is the Jacobian determinant of the
change of coordinates (1,€) — (z,y). Note that
in the first integral of equation 3 n,¢ are func-
tions of x,y, whereas in the second they are in-
dependent variables. Let k(z,y,;u,v) be the
kernel of the transformation when the integra-
tion is performed in the x,y domain and let
k(n,&; u,v) denote the kernel when it is carried
out in the n,& domain. It is immediate that
k(z,y,;u,v) = |J(n,&x,y)|k(n,& u,v) For in-
stance, let T, be a rotation and let S, be a di-
lation. The canonical coordinates are n(z,y) =
tan™! (y/x), é(z,y) = 1/21g(2?+y?) and the Ja-
cobian determinant is (l‘z + yz)_l (Ferraro and

Caelli, 1988, Ferraro, 1992).

TRANSFORMATIONAL PROPERTIES
OF KERNELS

From equation 3 it is clear that invariance
does not depend on the image per se but it is
a property of the representation of the image,
that, in our case, 1s determined by the kernel
k(z,y;u,v) of the integral transform. Then it is
of interest to determine which conditions a ker-
nel must satisfy for the corresponding integral
transform to be invariant in the strong sense. A
necessary and sufficient condition is established
by the following Proposition:

Proposition 1. An integral transform G is in-
variant in the strong sense with respect to a one-
parameter Lie transformation group Ty, with pa-
rameter a, if and only if its kernel k(z, y;u,v) is
such that

Tok(z,y;u,v) =
(4)

where |J(x,y; &', y")| is determinant of the Jaco-
bian of the transformation (x,y) — (¢',y"), with

|J(x,y; 2", y")| exp(—iua)k(z, y; u, v),

=Tz, v = Tyy.

Proof. Preliminarily note that k(x,y;u,v) =
k(T_ g, T_qy'su,v) = T_ ok (&' ¢y u, v).

= The integral transform G is invariant in the
strong sense by hypothesis, then

Gllaf(z,y)] =

//ﬂf#%@m&@ﬂwz (5)

//f(a:/,y/)k(T_ax/,T_ay/;u,v) | J | de'dy’ =

exp(iua)//f(a:/,y/)k(x/,y/;u,v)dx/dy/,

where |J| =| J(z,y,;2',y") |. Since the above
relation must hold for any f, it follows that

exp(iaw)k(z’, y';u,v) =
exp(taw) T k(x, y;u,v) =

(6)

| Tz g2, y') [ ke, ysu,v).
< From equation 4 it follows that

Gllaf(z,y)] =

//ﬂf#%@%wwﬂwz (7)

//f(x', YVR(T_ oz’ , T_ oy u,v)|J|dz'dy'.

By applying again equation 4, equation 7 can be
written as

Gllaf(z,y)] =

exp(iua)//f(a:/,y/)k(x/,y/;u,v)dx/dy/,

and hence G[T, f] = exp(iua)G[f].

From Equations 5 and 7 it 1s clear that a trans-
formation of the image f by the action of T,
with parameter value a is equivalent to trans-
formation of the kernel by T, with parameter



value —a.

Corollary 1. An wntegral transform G is invari-
ant i the strong sense with respect to an area
preserving(respectively linear), one-parameter,
Lie transformation group T,, if and only if the
modulus | k(x,y;u,v) | of its the kernel is invari-
ant with respect to T, (respectively, invariant but
for a constant scaling factor.

Proof. It is enough to recall that if T, is area
preserving then |J(z,y;2',y)] = 1 and that if
Ty is linear then |J(z,y;2',y')| = ¢, where cis a
constant.

Then, for G(f) to be invariant with respect
to a pair of transformation groups 7T, and Sy,
the kernel k(z,y;u,v) must be such that for T,
equation 4 holds, and analogously for Sp,

Spk(x,y;u,v) =

(8)

be two omne-

|J(z,y; 2",y )| exp(—ivh)k(z, y; u,v).

Proposition 2.  Let T,, S
parameter Lie transformation groups.
tegral transform G is invariant, in the strong
sense, with respect to T,, Sy if and only the ker-
nel of G is such that equations 4 and 8 hold.

An in-

Proof. The condition is obviously necessary.
To prove that is also sufficient it is enough to
observe that equation 4 implies that there must
exist a canonical coordinate 5 for T,, and equa-
tion 8 that there exists a canonical coordinate &
for Sy. These canonical coordinates can be found
simultaneusly, since equations 4 and 8 hold for
the same kernel, and this proves the assert.

It is well known that two operators have a
common eigenfunction if and only if they com-
mute (Davidov, 1965). Tt is easy to check
that, for T,,Sp, the family of such eigenfunc-
tions is k(n,&;u,v), the kernel of the inte-
gral transform written in the canonical coor-
dinates 7,¢£, and that the corresponding eigen-
values are exp(—iua),exp(—ivbh) respectively.
In fact, T,k(n,&u,v) = kin + 6n,&u,v) =

exp(—iua)k(n,&; u,v), since in the coordinate

system 7,& the action of T, is a translation
along n. Analogusly, Spk(n,&u,v) = k(n, € +
8&;u,v) = exp(—ivb)k(n,&; uw,v). This amounts
to say that given two transformation groups
Ta, Sy there exists a coordinate systems in which
the transformational states of a pattern have
well defined values and can be measured simul-
taneously, and independently from the shape of
the pattern. This is reminiscent of what happens
in quantum mechanics, where operators associ-
ated with two physical quantities yield observ-
ables which can be measured simultaneously if
and only if they commute. The reason for this
analogy resides in the property of commutativy
of Ty, Sy, in that it ensures that there is no ”in-
teraction” between the two transformations.

TWO-PARAMETERS
TRANSFORMATION GROUPS

In this section the results concerning strong
invariance will be extended to a particular class
of two-parameters transformation groups. Pre-
liminarily note that a the action of a two-
parameter transformation group Sy, i1s essen-
tially equivalent to the composition of the ac-
tions of two groups Ty, V3 (Bluman and Kumei,
1989). Then if the vector fields X4, X3, of Ty, V3
respectively, commute and are linerly indepen-
dent there exists an integral transform invariant
in the strong sense with respect to S,;. For in-
stance, it is straightforward to prove that a two-
parameter transformation group such that  and
y are transformed indepedently satisfies the con-
dition for the existence of an integral transform
invariant in the strong sense.

Proposition 3. Suppose it is given a two pa-
rameter transformation group S, 5, with param-
eters a and b, such that

Sur = 2'(x,a),
Savy = ¥'(y,b)
respectively. Then there exists an integral trans-

form G invariant in the strong sense with respect
to Sab~



Proof. The action of S;; on z,y can be writ-
ten as the composition of two tranformations
Ta, Vi such that (Tyx,T,y) = (2'(z,a),y) and

Ve, Vyy) = (2,y'(2,b)). The vector fields of
Ta, V3 are (Bauman and Kumei, 1989)
dz’ 0
Xa = 7 |la= a9
da la=o0 Ox
dy’ 0
Xy = = |p=0 —
b db b=0 aya

and 1t 1s immediate to prove that X,, X; com-
mute since =’ does not depend on y and y' is
independent from x; furthermore X, X} are or-
thogonal and hence linearly independent. Then
the conditions for the existence of a representa-
tion invariant in the strong sense are met (Fer-

raro and Caelli, 1988).

Let 7,& be the canonical coordinates of T, V}
respectively. By definition they must satisfy the
following equations

Xgn=1 Xynp=0,

X=0 XE=1, (9)

(Ferraro and Caelli, 1988) that are two pairs of
partial differential equations from which n and
¢ can be computed as functions of x and y; the
kernel of the integral transform invariant, in the
strong sense, under S, ; is then

k(z,y,u,v) =

[T, m; 2, y) [ exp{—=[un(z,y) + v€(z, y)]},

(see equation 3).

For instance
Sap(z,y) = (exp(a)z,exp(b)y). (The reason for
the use of this notation for the dilations is to en-
sure that the elements corresponding to a = 0,
b = 0 belongs to the groups 7y, V} respectively
and indeed are the identities.) The correspond-
ing vector fields are

consider the transformation

Xo=20/0z, X,=yd/0y.
Equations 9 then become
o _ o
l‘% = 1, l‘% = 0,
on o€
— = — =1
Yoy 0, Yoy = b

and one readily obtains the solutions n(xz,y) =
lgz, &(x,y) = lgy. The determinant of the Ja-
cobian is |J(n, &, z,y)| = |zy|~!; thus the kernel
of the integral transform invariant with respect
to Sgp 18

k(z, ysu,v) = |y~ exp{~[ulg |z + v1g |yl]},

that is k(z,y;u,v) = 27“~1y=?=1 the kernel
of the two-dimensional Mellin transform (Caelli
and Liu, 1988). Tt is easy to check that the under
dilations the Mellin transform is indeed invariant
in the strong sense (Ferraro, 1992).

For another instance of this procedure con-
sider Sgp(x,y) = (2P y=PY)  In this case
Xo=2lgad/0x, Xy = ylgyd/dy, and

on _ o _

o 9¢
lgy— =0 lgy— =1
ygyay ) ygyay )

whose solutions are n = lg(lgx), & = lg(lgy);
the Jacobian determinant is |J(n,&2,y)] =
lzylgzlgy|~!, and hence the kernel of the in-
variant integral transform is

k(z,y,u,v) =

lrylglgy|™" exp{—[ulg(lg ) + vig(lg v)]}.
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