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ABSTRACT
Wavelet with longer support length is used in the
smooth area of image to integrate energy effectively,
while wavelet with shorter support length is used in
the vicinity of edges. These two  sets of wavelet
transform switch automatically according to the
image. The main problem for the design of time-
varying filter is how to reconstruct exactly the signal
during the transition period. An exact reconstruction
method between any two sets of the widely used
biorthogonal wavelet bases was proposed in this
paper. And even more, by feedback of quantized
wavelet coefficients, side information is embedded in
the coding bit stream.

1 INTRODUCTION

In sub-band or wavelet image coding, there exists
amplitude oscillation in the vicinity of edges in the
reconstructed image, which is also called Gibb's
phenomena. To overcome these annoying phenomena,
time-varying filter for image coding was first
proposed in [1], in which filter's coefficient changed
automatically to the input, the main problem for the
design of time-varying filter is how to reconstruct
exactly the signal during the transition period. On
the basis of a specified simple filter bank, a simple
exact reconstruction method was given. [2] developed
this idea, and presented analysis of infinite impulse
response (IIR) filter bank. The result of image coding
simulation demonstrated the success of time-varying
filter bank, the amplitude oscillation was reduced
significantly and PSNR was improved a little
compared to the conventional IIR filter bank. But at
the same time the compression ratio decreased, this is
because that this coding system needs to emit edge
information as side information to tell the receiver
when to switch filter bank.

This paper presents a reconstruction method for
switching between any two sets of the widely used

biorthogonal wavelet bases. It is relatively a little
complicated, but there is no limitation on the choice
of biorthogonal wavelet. And even more, by feedback
of quantized wavelet coefficients, side information is
embedded in the coding bit stream.

2 TIME VARYING WAVELET TRANSFORM

The one level wavelet analysis of coding system is
depicted in Fig.1.

Where Q means quantize, D1  and D2  are

defined as :
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Fig.1 one level of time varing wavelet transform



has longer support length is used.

3 EXACT RECONSTRUCTION

Here we only consider the exact reconstruction on
switching with two biorthogonal wavelets. The
symbols are defined as following:
(G,H) is the filter bank with longer support length;
The support length of G is 2 1N G + ;

The support length of H is 2 1N H + ;

N Max N NG H= −( ),  1 ;

(G’,H’) is the filter bank with shorter support length;
The support length of G’ is 2 1NG' + ;

The support length of H’ is 2 1N H ' + ;

N Max N NG H' ( )' '= −,  1 ;

If cm,τ (m is the resolution level, τ is the time) -the

output of high-pass filter G, is larger than threshold
T, then from time τ +1 , the filter bank is switched to
(G,H). Generally, if | |,c Tm τ > , pixel am−1 2, τ  is in

the vicinity of image edge, the correlation between
the pixels before am−1 2, τ and those after am−1 2, τ  is

very small. So after switching, we let am−1 2, τ  be the

new starting point of wavelet analysis, and do border
extension at am−1 2, τ . That is:

if | |,c Tm τ > , then  for  n > τ
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will make the reconstruction of  am n−1,  (n 2 + 2)≥ τ
has no relation with am n,  ,   cm n, ( )n ≤ τ .

For biorthogonal wavelet, the reconstruction  is

a h a g cm l n l m n n l m n
n

− − − += +∑1 2 2 1, , ,(
~ ~ )  ,and

g hn
n

n= − +
−( )

~
1 1  ,  ~ ( )g hn

n
n= − +

−1 1 . From the

support length of G and H, we know that:
~g n l2 1 0− + =  ,            if 2 1n l N H− + >
~
h n l2 0− = ,                 if 2n l N G− >
~ ~
g hn l n l2 1 2 0− + −= = , if l n N< −2 , .

so, for l N< + −2 1( ) ,τ  the reconstruction of am l−1,

does not concern with a cm n m n, , ,    ( )∀ >n τ which

is obtained before switching. And for l ≥ +2 1( )τ , the

reconstruction of am l−1, also does not concern with

the wavelet coefficients obtained before switching
because of border extension at am−1 2, τ .

What need to be reconstructed with a special way
is  a l Nm l− ∈ + − +1 2 2 2 1, [ , ] ,   τ τ .

Without loss of generality, we can assume that
N NH G≥  and N H  is odd number, then the part of

wavelet analysis which is relative with
a l Nm l− ∈ + − +1 2 2 2 1, [ , ] ,   τ τ  can be written in the

following matrix form:
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then we have: 
� � � � � � �
p A p A p A B1 1 2 2 3 3+ + = , where 

�
p1,

  
� �
p p2 3, are matrixes which elements are all wavelet

filter coefficients or 0. From previous discussion we

know that the elements of 
� �
A A1 3,   can be recon-

structed using ordinary wavelet synthesis method,
while the elements of  

�
A2 are just the wavelet coeff-

icients during filter switching period under m-1th
resolution level. So if 

�
p2 is invertible, then :

� � � � � � �
A p B p A p A2 2

1
1 1 3 3= − −− ( )

This is just the exact reconstruction formula in the
time of filter switching. That 

�
p2  is invertible is the

only condition which is very weak.

4 SIMULATION RESULT

Simulations have been done with a 256x256 8 bits
gray image "Cameraman" shown in Fig.2,
quantization and the following lossless coding
scheme are the same as that in [2]. Table 1 shows the
performance of the coding system of this paper and
that presented in [2]. Fig.3 is the reconstructed image,
from which we can see that the annoying Gibb's
phenomena is reduced significantly.

Method PSNR Bit Rate(bpps)
TVW 24.96 0.1998
TVIIR 24.83 0.2353
CWT 24.84 0.2012

Table 1 performance of several coding systems
Note: TVW-----coding system proposed in this paper;

TVIIR----coding system proposed in [2];
CWT-----conventional wavelet transform;

5 CONCLUSION

Because that both analysis and synthesis filters are
linear, the reconstruction is just a linear combination
process. If we switch one linear filter bank (G,H) to
another linear one (G',H'), the property of linear
combination is still remained in every pixel, although



the original reconstruction formula is invalid during
the transition period. Through comparing coeffi-
cients of linear functions, we testify that exact
reconstruction during transition period can be made
for any biorthogonal wavelet with different coeffi-
cients of linear combination specified for different
wavelet sets. Actually, this method can also be
extended to any other cases with linear filter.

Another distinct advantage of the proposed
coding system here is that through feedback of
wavelet coefficients, there is no need to emit side
information to decide when to switch filter bank, this
information is embedded in the coding stream. So
compared to that in [2], a large portion of bits is
reduced.
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Fig. 2 Original "Cameraman" image

Fig. 3 "Cameraman" coded at 0.1998 bpps
with TVW , PSNR=24.96

Fig.4 “Cameraman” coded at 0.2012 bpps with
CWT, PSNR=24.84




