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ABSTRACT

In the contex of electromagnetic signals, we want to de-
tect a transient in a non stationnary gaussian noise by
a higher order statistic test. In this paper, we use a new
formalism (an extension of Gardner’s work) that enables
us to evaluate theoretically the response of higher order
statistic test for detection. We develop the theoretical
ground and we prove that higher order statistic detec-
tion test provides a very short delay detection. We ap-
ply our methods to simulation of a simple and typical
example : the kurtosis.

INTRODUCTION

In the study of electromagnetic signals, our aim 1s to de-
tect a deterministic transient signal s(¢), in presence of
an additive gaussian noise n(t). The noise has a slowly
moving spectrum and we can consider the noise variance
as a constant during all the observation. Second order
methods are difficult to use as they need a prewhitening.
We propose to use the Higher Order Statistic (HOS).
The HOS have already been used for detection [1]. Es-
pecially the normalized cumulant of order 3 and 4 [2].
The HOS allows us to change of observation space in
order to make the detection easier.

The choice between the two hypothesis :

{Hoi z(t) = (1)
Hyoooa(t) = s(t) + n(t)

where n(?) is a gaussian noise and s(t) is the signal to
detect.
is then transposed into the new formulation :

{Ho . ano
H1 . Cn§£0

where (,, 1s normalized cumulant of order n.

We propose here a sequential detection. First, we ex-
tend the work of Gardner for deterministic signals to
noisy deterministic signals, in order to have a theoretical
knowledge of the shape of the kurtosis response. Then
we are be able to evaluate the HOS test in terms of time
delay detection of and of time location of a transient.
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1 HIGHER ORDER FOR DETERMINISTIC
SIGNALS

This part presents an extension of the non probabilis-
tic theory of Gardner [3] [4]. In straight analogy with
conventional probability distribution function (PDF),
Gardner defines a Fraction of Time (FOT) PDF of the
real time serie z(t). We present a interpretation of the
FOT PDF for a deterministic signal, which enables us
to compute the cumulant of a noisy deterministic signal.

1.1 Analogy with ergodic signals

For ergodic signal the expected values (ensemble aver-
ages) are time invariant and are equal to time averages.

T

E{x} :/ upr(u)du = lim %/2 2(t)dt

— 00

For ergodic signals the probability distribution for the
amplitude of a time serie is then :
Fp(u) = probability that () < u
T
= limy_eo # [ 2 Ulu — x(t)]dt
The PDF of the signal is then :

dFy(u)
du

The probability law can be then envisionned as being
derived from relative frequencies of occurence of events
so that probability functions are really fraction of time
distributions.

1

po(u) =

1.2 Definition of FOT PDF for deterministic
signals

It is then easy to transpose these time average tools to

deterministic signals. For a deterministic signal, s(t),

the FOT PDF can be defined as :

T

pe(u) = lim %/; 6(u— s(t))dt (1)

2

1U is the unit-step function :



We can then define tools such as first and second char-
acteristic functions, and higher order moments and cu-
mulants for deterministic signal. Moments of a deter-
ministic signal are then defined as :

oQ

pfsh= [t pid= Jim 1 [ sorar @

The relation between cumulants and moments are the
same as those for random signals. We have for zero
mean signals the following relations for orders 1 to 4 :

Gfst = pais} (3)
Gs{s} = pa{s} (4)
Ca{s} = pa{s} —3ua{s}’ (5)

For non periodic signals the transposition is not accu-
rate. For example if we take the signal of finite ernergy
s(t) = H—% its FOT PDF is ps(u) = 8p(u). We have
then a great loss of information. In this paper we will
stick to periodic signals and signals of finite duration
which can be periodised.

1.3 Probabilistic interpretation of the FOT
PDF

If we study the random variable S = s(f), where @ is a
uniform random variable between [—Z, L] (where T is
the period of the signal s(t)). If we define the ensemble
Dy = {t|s(t) < u}. As @ is uniform random variable, we

have :
Prob(X <u) = Prob(0 € D)

= measure of D, /T
Which if we look at figure 1, we see that :

0 u<A
T
Prob(X <u) = %fi Uu—s(t)dt A<z<B
1 u>B
where s : [— g, %] [4, B] As we have a periodic
signal limp_ o, ~ T f Ulu f U(u—s(t))dt.

We have shown that the FOT PDF 1s the PDF of the

T2 0 TR

Figure 1: Probabilistic interpretation of the FOT PDF

random variable S. This means that the FOT PDF

describes the random signal of unknown phase which
can also be expressed as : the FOT PDF describes the
random variable of the observed value when the time of
observation is chosen at random. This is always the case
in the context of surveillance, we don’t know when the
phenomenon we are looking for is likely to occur.

2 HOS FOR NOISY DETERMINISTIC SIG-
NALS

2.1 FOT PDF for noisy deterministic signals

In this part we consider the noisy signal : z(t) =
s(t) 4+ n(t). Where n(t) is a stationnary random signal
of PDF p,,. We want to evaluate the FOT PDF of x(¢),
so we need to study the random variable X = S+ N
where S = s(f) and N = n(@) where 6 is still a uniform
random variable between [—Z 5, 2] We can suppose that
the random variables S and N are independant. This
hypothesis is reasonnable when the physical sources of
the noise are different from the signal physical sources.
In this case X is the sum of two independant random
variables, which means :

PX = Ps *PN

As n(t) is a stationnary noise we have p, = py. So the

FOT PDF of (1) is
Pz = Ps * Pn (6)

We illustrate this by the FOT PDF of a sinusoid with
uniform distributed noise. The FOT PDF of s(t) =
Asin(27t) is

u< —AA<u
—A<u<A

ps(u) = { 1 _Od arcsin(u)
1—u? du
(the expression of p; is given in [5]). As it is shown
in figure 2, the result obtained by the expression (6) is
very similar to the result obtained by the histogram of
a digital noisy sinusoid.

Figure 2: Theoretical and estimated
FOT PDF of a noisy sinusoid

2.2 Cumulants of a noisy deterministic signal

As we have p, = p;s * p,, the signal s(¢) and the noise
n(t) behave as two independant random signals. So the
cumulant of z is equal to cumulant of s plus the cumu-
lant of n. This result generalize to noisy deterministic



signals the well known result for random signals : HOS
are insensitive to additive gaussian noise.

3 ANALYSIS OF THE KURTOSIS RE-
SPONSE

We now consider only the cumulant of order 4. The
same approach can be done for other orders, but the
kurtosis seems to give better performances. In this part
we will analyse theoretical response of the kurtosis and
compare it to simulation result.

3.1 Computation of the kurtosis

We now calculate the kurtosis of a noisy transient signal
in a sliding window. Which means at time ¢, we only
study the signal between [t-T, t]. We can then consider
we have a signal of finite duration. The previous results
are still valid.

So the nth order moment of the signal () for T wide
causal window is :

pite =7 [ st

The cumulant of order 4 i1s cumputed by using the re-
lation (5). To fix the detection threshold we need to
normalized the cumulant. In order to have a better con-
trast between the noise and the signal out of the sensor,
we prefer to normalize the fourth order cumulant by the
noise variance, instead of the signal plus noise variance.
So we suppose we have time to learn the noise variance
o2 before the signal appears. The window length is
small enough so we consider that the noise in the win-
dow is stationnary. Our sensor is then:

Cumiz

k(t) =

4
On

3.2 Theoretical and simulation results

We show here two examples of transients :

e a dipolar signal e, (¢) = %
0 t<—1t>1
e a triangle : es(?) = t+1/2  —1<t<0
—t+1/2 0<t<li

For both these signals we have evaluated the optimal
window length. Unlike second order statistics, the max-
imum response is not given when the window is centered
on the transient. In order to evaluate the optimal win-
dow length, we need to plot the 3D function k(¢,7") and
find the value 7" that maximizes this function .

3.2.1 signal : ey

For the signal eq, the optimal length is estimated at 1.6s.
This is a very short time compare to the duration of the
transient (fig. 3). If we look at the theoretical response
of the kurtosis test (plain curve fig. 4) of this transient,

we see that the kurtosis reaches its maximum response
very soon after the signal appears in the analyzing win-
dow. This means that we detect very quickly a rupture
in the process, this rupture is likely to have a very short
duration as the optimal window is of 1.6s length. The
kurtosis test has a very sharp response compared to the
square energy response (dot curve in fig. 4). This en-
ables us to do a better time location of the signal.

)
N

Figure 3: signal eq

Figure 4: Theoretical kurtosis response
(with a 1.6s wide causal window)
and square energy response

We examine here an example with a simulated noise.
Figure 5 show the signal x(¢) and that the transient
starts at sample 750 and stops at sample 1250. The
simulation results (fig. 6) are similar to what we ex-
pected from the theoretical ones. We still have a very
fast detection and a very sharp kurtosis response.

3.2.2 signal : ey

For the signal ey, the optimum window length is 7" =
0.5s. The kurtosis reaches its maximum response (fig.
7) very soon after the signal appears in the analyzing
window. Its response is symetrical, there is a second

Figure 5: signal eq



maximum response when the signal exits the analyzing
window.

The transient of the noisy signal (fig. 8) starts at
sample 1000 and stops at sample 2000. The simulation

results (fig. 9) are similar to what we expected from the o (
theoretical ones. w0 ‘

. mn
CONCLUSION o N Wi o

In this paper it is shown how to evaluate the theoreti-
cal response of the kurtosis of a transient signal. The
analysis of this response, proves that the kurtosis is a
very fast sensor and can give a very good time location
of the transient. The simulation results agree with the
theory. If we compare the results we have for different
transients, the time delay depends on the shape of the
transient we study. So in order to perform an efficient
time location of a specific transient, we need to study
the kurtosis response of this transient. These results
have been extended to other HOS test such as skewness
and neguentropy (which is defined in [1]) but kurtosis
remains the best compromise beetween detection per-
formances and computation time.

Figure 6: Simulation kurtosis response
(with a 130 sample wide causal window)
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Figure 9: Simulation kurtosis response
(with a 500 sample wide causal window)



