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ABSTRACT

In the contex of electromagnetic signals� we want to de�
tect a transient in a non stationnary gaussian noise by
a higher order statistic test� In this paper� we use a new
formalism�an extension of Gardner�s work� that enables
us to evaluate theoretically the response of higher order
statistic test for detection� We develop the theoretical
ground and we prove that higher order statistic detec�
tion test provides a very short delay detection� We ap�
ply our methods to simulation of a simple and typical
example � the kurtosis�

INTRODUCTION

In the study of electromagnetic signals� our aim is to de�
tect a deterministic transient signal s�t�� in presence of
an additive gaussian noise n�t�� The noise has a slowly
moving spectrum and we can consider the noise variance
as a constant during all the observation� Second order
methods are di�cult to use as they need a prewhitening�
We propose to use the Higher Order Statistic �HOS��
The HOS have already been used for detection 	
�� Es�
pecially the normalized cumulant of order � and 
 	���
The HOS allows us to change of observation space in
order to make the detection easier�
The choice between the two hypothesis ��

H� � x�t� � n�t�
H� � x�t� � s�t� � n�t�

where n�t� is a gaussian noise and s�t� is the signal to
detect�
is then transposed into the new formulation ��

H� � �n � �
H� � �n �� �

where �n is normalized cumulant of order n�
We propose here a sequential detection� First� we ex�
tend the work of Gardner for deterministic signals to
noisy deterministic signals� in order to have a theoretical
knowledge of the shape of the kurtosis response� Then
we are be able to evaluate the HOS test in terms of time
delay detection of and of time location of a transient�

� HIGHER ORDER FOR DETERMINISTIC

SIGNALS

This part presents an extension of the non probabilis�
tic theory of Gardner 	�� 	
�� In straight analogy with
conventional probability distribution function �PDF��
Gardner de�nes a Fraction of Time �FOT� PDF of the
real time serie x�t�� We present a interpretation of the
FOT PDF for a deterministic signal� which enables us
to compute the cumulant of a noisy deterministic signal�

��� Analogy with ergodic signals

For ergodic signal the expected values �ensemble aver�
ages� are time invariant and are equal to time averages�

Efxg �

Z �
��

u px�u�du � lim
T��




T

Z T
�

�T
�

x�t�dt

For ergodic signals the probability distribution for the
amplitude of a time serie is then �
Fx�u� �� probability that x�t� � u

� limT��
�
T

R T
�

�T
�

U 	u� x�t��dt
�

The PDF of the signal is then �

px�u� �
dFx�u�

du

The probability law can be then envisionned as being
derived from relative frequencies of occurence of events
so that probability functions are really fraction of time
distributions�

��� De�nition of FOT PDF for deterministic

signals

It is then easy to transpose these time average tools to
deterministic signals� For a deterministic signal� s�t��
the FOT PDF can be de�ned as �

ps�u� � lim
T��




T

Z T
�

�T
�

��u� s�t��dt �
�

�U is the unit�step function �

U�u� �

n
� u � �
� u � �



We can then de�ne tools such as �rst and second char�
acteristic functions� and higher order moments and cu�
mulants for deterministic signal� Moments of a deter�
ministic signal are then de�ned as �

�nfsg �

Z �
�

un ps�u�du � lim
T��




T

Z T
�

�T
�

s�t�ndt ���

The relation between cumulants and moments are the
same as those for random signals� We have for zero
mean signals the following relations for orders 
 to 
 �

��fsg � ��fsg ���

��fsg � ��fsg �
�

��fsg � ��fsg � ���fsg
� ���

For non periodic signals the transposition is not accu�
rate� For example if we take the signal of �nite ernergy
s�t� � �

��t� its FOT PDF is ps�u� � ���u�� We have
then a great loss of information� In this paper we will
stick to periodic signals and signals of �nite duration
which can be periodised�

��� Probabilistic interpretation of the FOT

PDF

If we study the random variable S � s���� where � is a
uniform random variable between 	�T

� �
T

� � �where T is
the period of the signal s�t��� If we de�ne the ensemble
Du � ftjs�t� � ug� As � is uniform random variable� we
have �
Prob�X � u� � Prob�� � Du�

� measure of Du�T
Which if we look at �gure 
� we see that �

Prob�X � u� �

���
��

� u � A
�
T

R T
�

��
�

U �u� s�t��dt A � x � B


 u � B

where s � 	�T

� �
T

� � � 	A�B�� As we have a periodic

signal limT��
�
T

R T
�

�T
�

U �u�s�t��dt �
R �

�

��
�

U �u�s�t��dt�

We have shown that the FOT PDF is the PDF of the

B

u

Du
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Figure 
� Probabilistic interpretation of the FOT PDF

random variable S� This means that the FOT PDF

describes the random signal of unknown phase which
can also be expressed as � the FOT PDF describes the
random variable of the observed value when the time of
observation is chosen at random� This is always the case
in the context of surveillance� we don�t know when the
phenomenon we are looking for is likely to occur�

� HOS FOR NOISY DETERMINISTIC SIG�

NALS

��� FOT PDF for noisy deterministic signals

In this part we consider the noisy signal � x�t� �
s�t� � n�t�� Where n�t� is a stationnary random signal
of PDF pn� We want to evaluate the FOT PDF of x�t��
so we need to study the random variable X � S � N
where S � s��� and N � n��� where � is still a uniform
random variable between 	�T

� �
T

� �� We can suppose that
the random variables S and N are independant� This
hypothesis is reasonnable when the physical sources of
the noise are di�erent from the signal physical sources�
In this case X is the sum of two independant random
variables� which means �

pX � pS � pN

As n�t� is a stationnary noise we have pn � pN � So the
FOT PDF of x�t� is �

px � ps � pn ���

We illustrate this by the FOT PDF of a sinusoid with
uniform distributed noise� The FOT PDF of s�t� �
Asin��	t� is

ps�u� �

�
� u � �A A � u

�p
��u� � d arcsin�u�

du
�A � u � A

�the expression of ps is given in 	���� As it is shown
in �gure �� the result obtained by the expression ��� is
very similar to the result obtained by the histogram of
a digital noisy sinusoid�
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Figure �� Theoretical and estimated
FOT PDF of a noisy sinusoid

��� Cumulants of a noisy deterministic signal

As we have px � ps � pn� the signal s�t� and the noise
n�t� behave as two independant random signals� So the
cumulant of x is equal to cumulant of s plus the cumu�
lant of n� This result generalize to noisy deterministic



signals the well known result for random signals � HOS
are insensitive to additive gaussian noise�

� ANALYSIS OF THE KURTOSIS RE�

SPONSE

We now consider only the cumulant of order 
� The
same approach can be done for other orders� but the
kurtosis seems to give better performances� In this part
we will analyse theoretical response of the kurtosis and
compare it to simulation result�

��� Computation of the kurtosis

We now calculate the kurtosis of a noisy transient signal
in a sliding window� Which means at time t� we only
study the signal between 	t�T� t�� We can then consider
we have a signal of �nite duration� The previous results
are still valid�
So the nth order moment of the signal x�t� for T wide

causal window is �

�nt fxg �



T

Z
t

t�T
x�u�ndu

The cumulant of order 
 is cumputed by using the re�
lation ���� To �x the detection threshold we need to
normalized the cumulant� In order to have a better con�
trast between the noise and the signal out of the sensor�
we prefer to normalize the fourth order cumulant by the
noise variance� instead of the signal plus noise variance�
So we suppose we have time to learn the noise variance

�n before the signal appears� The window length is
small enough so we consider that the noise in the win�
dow is stationnary� Our sensor is then�

k�t� �
Cum�

tx


�n

��� Theoretical and simulation results

We show here two examples of transients �

� a dipolar signal e��t� �
��	t�

���t�����
�

� a triangle � e��t� �

��
�

� t � ��
� t �

�
�

t� 
�� ��
� � t � �

�t � 
�� � � t � �
�

For both these signals we have evaluated the optimal
window length� Unlike second order statistics� the max�
imum response is not given when the window is centered
on the transient� In order to evaluate the optimal win�
dow length� we need to plot the �D function k�t� T � and
�nd the value T that maximizes this function �

����� signal � e�

For the signal e�� the optimal length is estimated at 
��s�
This is a very short time compare to the duration of the
transient ��g� ��� If we look at the theoretical response
of the kurtosis test �plain curve �g� 
� of this transient�

we see that the kurtosis reaches its maximum response
very soon after the signal appears in the analyzing win�
dow� This means that we detect very quickly a rupture
in the process� this rupture is likely to have a very short
duration as the optimal window is of 
��s length� The
kurtosis test has a very sharp response compared to the
square energy response �dot curve in �g� 
�� This en�
ables us to do a better time location of the signal�
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Figure 
� Theoretical kurtosis response
�with a 
��s wide causal window�

and square energy response

We examine here an example with a simulated noise�
Figure � show the signal x�t� and that the transient
starts at sample ��� and stops at sample 
���� The
simulation results ��g� �� are similar to what we ex�
pected from the theoretical ones� We still have a very
fast detection and a very sharp kurtosis response�

����� signal � e�

For the signal e�� the optimum window length is T �
���s� The kurtosis reaches its maximum response ��g�
�� very soon after the signal appears in the analyzing
window� Its response is symetrical� there is a second
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maximum response when the signal exits the analyzing
window�
The transient of the noisy signal ��g� �� starts at

sample 
��� and stops at sample ����� The simulation
results ��g� �� are similar to what we expected from the
theoretical ones�

CONCLUSION

In this paper it is shown how to evaluate the theoreti�
cal response of the kurtosis of a transient signal� The
analysis of this response� proves that the kurtosis is a
very fast sensor and can give a very good time location
of the transient� The simulation results agree with the
theory� If we compare the results we have for di�erent
transients� the time delay depends on the shape of the
transient we study� So in order to perform an e�cient
time location of a speci�c transient� we need to study
the kurtosis response of this transient� These results
have been extended to other HOS test such as skewness
and neguentropy �which is de�ned in 	
�� but kurtosis
remains the best compromise beetween detection per�
formances and computation time�
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